17 research outputs found

    Tiling, spectrality and aperiodicity of connected sets

    Full text link
    Let ΩRd\Omega\subset \mathbb{R}^d be a set of finite measure. The periodic tiling conjecture suggests that if Ω\Omega tiles Rd\mathbb{R}^d by translations then it admits at least one periodic tiling. Fuglede's conjecture suggests that Ω\Omega admits an orthogonal basis of exponential functions if and only if it tiles Rd\mathbb{R}^d by translations. Both conjectures are known to be false in sufficiently high dimensions, with all the so-far-known counterexamples being highly disconnected. On the other hand, both conjectures are known to be true for convex sets. In this work we study these conjectures for connected sets. We show that the periodic tiling conjecture, as well as both directions of Fuglede's conjecture are false for connected sets in sufficiently high dimensions.Comment: 20 pages, 8 figure

    Knots, Trees, and Fields: Common Ground Between Physics and Mathematics

    Get PDF
    One main theme of this thesis is a connection between mathematical physics (in particular, the three-dimensional topological quantum field theory known as Chern-Simons theory) and three-dimensional topology. This connection arises because the partition function of Chern-Simons theory provides an invariant of three-manifolds, and the Wilson-loop observables in the theory define invariants of knots. In the first chapter, we review this connection, as well as more recent work that studies the classical limit of quantum Chern-Simons theory, leading to relations to another knot invariant known as the A-polynomial. (Roughly speaking, this invariant can be thought of as the moduli space of flat SL(2,C) connections on the knot complement.) In fact, the connection can be deepened: through an embedding into string theory, categorifications of polynomial knot invariants can be understood as spaces of BPS states. We go on to study these homological knot invariants, and interpret spectral sequences that relate them to one another in terms of perturbations of supersymmetric theories. Our point is more general than the application to knots; in general, when one perturbs any modulus of a supersymmetric theory and breaks a symmetry, one should expect a spectral sequence to relate the BPS states of the unperturbed and perturbed theories. We consider several diverse instances of this general lesson. In another chapter, we consider connections between supersymmetric quantum mechanics and the de Rham version of homotopy theory developed by Sullivan; this leads to a new interpretation of Sullivan's minimal models, and of Massey products as vacuum states which are entangled between different degrees of freedom in these models. We then turn to consider a discrete model of holography: a Gaussian lattice model defined on an infinite tree of uniform valence. Despite being discrete, the matching of bulk isometries and boundary conformal symmetries takes place as usual; the relevant group is PGL(2,Qp), and all of the formulas developed for holography in the context of scalar fields on fixed backgrounds have natural analogues in this setting. The key observation underlying this generalization is that the geometry underlying AdS3/CFT2 can be understood algebraically, and the base field can therefore be changed while maintaining much of the structure. Finally, we give some analysis of A-polynomials under change of base (to finite fields), bringing things full circle.</p

    Fivebranes and 3-manifold homology

    Get PDF
    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory

    Packing and covering in combinatorics

    Get PDF

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore