294 research outputs found

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    A scalable, efficient scheme for evaluation of stencil computations over unstructured meshes

    Get PDF
    pre-printStencil computations are a common class of operations that appear in many computational scientific and engineering applications. Stencil computations often benefit from compile-time analysis, exploiting data-locality, and parallelism. Post-processing of discontinuous Galerkin (dG) simulation solutions with B-spline kernels is an example of a numerical method which requires evaluating computationally intensive stencil operations over a mesh. Previous work on stencil computations has focused on structured meshes, while giving little attention to unstructured meshes. Performing stencil operations over an unstructured mesh requires sampling of heterogeneous elements which often leads to inefficient memory access patterns and limits data locality/reuse. In this paper, we present an efficient method for performing stencil computations over unstructured meshes which increases data-locality and cache efficiency, and a scalable approach for stencil tiling and concurrent execution. We provide experimental results in the context of post-processing of dG solutions that demonstrate the effectiveness of our approach

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Performance Comparison Between Patus and Pluto Compilers on Stencils

    Get PDF
    Comparing the performances of Patus and Pluto compilers on stencil applications. Stencils are written in Jacobi and Seidel style of coding and performances of both these compilers are analysed based on these coding styles
    • …
    corecore