1,147 research outputs found

    The Complexity of Infinite Computations In Models of Set Theory

    Get PDF
    We prove the following surprising result: there exist a 1-counter B\"uchi automaton and a 2-tape B\"uchi automaton such that the \omega-language of the first and the infinitary rational relation of the second in one model of ZFC are \pi_2^0-sets, while in a different model of ZFC both are analytic but non Borel sets. This shows that the topological complexity of an \omega-language accepted by a 1-counter B\"uchi automaton or of an infinitary rational relation accepted by a 2-tape B\"uchi automaton is not determined by the axiomatic system ZFC. We show that a similar result holds for the class of languages of infinite pictures which are recognized by B\"uchi tiling systems. We infer from the proof of the above results an improvement of the lower bound of some decision problems recently studied by the author

    Highly Undecidable Problems about Recognizability by Tiling Systems

    Get PDF
    to appear in a Special Issue of the journal Fundamenta Informaticae on Machines, Computations and Universality.International audienceAltenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with usual acceptance conditions, such as the Büchi and Muller ones [1]. It was proved in [9] that it is undecidable whether a Büchi-recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We show here that these two decision problems are actually Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and ``highly undecidable". We give the exact degree of numerous other undecidable problems for Büchi-recognizable languages of infinite pictures. In particular, the non-emptiness and the infiniteness problems are Σ11\Sigma^1_1-complete, and the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, are all Π21\Pi^1_2-complete. It is also Π21\Pi^1_2-complete to determine whether a given Büchi recognizable language of infinite pictures can be accepted row by row using an automaton model over ordinal words of length ω2\omega^2

    Subshifts as Models for MSO Logic

    Full text link
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of "pattern counting" subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al.Comment: arXiv admin note: substantial text overlap with arXiv:0904.245

    Random numbers from the tails of probability distributions using the transformation method

    Get PDF
    The speed of many one-line transformation methods for the production of, for example, Levy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, for the class of decreasing probability densities fast rejection implementations like the Ziggurat by Marsaglia and Tsang promise a significant speed-up if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transform maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.Comment: 17 pages, 7 figures, submitted to a peer-reviewed journa

    On Recognizable Languages of Infinite Pictures

    Get PDF
    An erratum is added at the end of the paper: The supremum of the set of Borel ranks of Büchi recognizable languages of infinite pictures is not the first non recursive ordinal ω1CK\omega_1^{CK} but an ordinal γ21\gamma^1_2 which is strictly greater than the ordinal ω1CK\omega_1^{CK}. This follows from a result proved by Kechris, Marker and Sami (JSL 1989).International audienceIn a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for infinite words. The authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length ω2\omega^2. We give in this paper a solution to this problem, showing that all languages of infinite pictures which are accepted row by row by Büchi or Choueka automata reading words of length ω2\omega^2 are Büchi recognized by a finite tiling system, but the converse is not true. We give also the answer to two other questions which were raised by Altenbernd, Thomas and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable)

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Subshifts as Models for MSO Logic

    Get PDF
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of ''pattern counting'' subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al
    • …
    corecore