376 research outputs found

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    Towards Stratification Learning through Homology Inference

    Full text link
    A topological approach to stratification learning is developed for point cloud data drawn from a stratified space. Given such data, our objective is to infer which points belong to the same strata. First we define a multi-scale notion of a stratified space, giving a stratification for each radius level. We then use methods derived from kernel and cokernel persistent homology to cluster the data points into different strata, and we prove a result which guarantees the correctness of our clustering, given certain topological conditions; some geometric intuition for these topological conditions is also provided. Our correctness result is then given a probabilistic flavor: we give bounds on the minimum number of sample points required to infer, with probability, which points belong to the same strata. Finally, we give an explicit algorithm for the clustering, prove its correctness, and apply it to some simulated data.Comment: 48 page

    Higher-order Voronoi diagrams of polygonal objects

    Get PDF
    Higher-order Voronoi diagrams are fundamental geometric structures which encode the k-nearest neighbor information. Thus, they aid in computations that require proximity information beyond the nearest neighbor. They are related to various favorite structures in computational geometry and are a fascinating combinatorial problem to study. While higher-order Voronoi diagrams of points have been studied a lot, they have not been considered for other types of sites. Points lack dimensionality which makes them unable to represent various real-life instances. Points are the simplest kind of geometric object and therefore higher- order Voronoi diagrams of points can be considered as the corner case of all higher-order Voronoi diagrams. The goal of this dissertation is to move away from the corner and bring the higher-order Voronoi diagram to more general geometric instances. We focus on certain polygonal objects as they provide flexibility and are able to represent real-life instances. Before this dissertation, higher-order Voronoi diagrams of polygonal objects had been studied only for the nearest neighbor and farthest Voronoi diagrams. In this dissertation we investigate structural and combinatorial properties and discover that the dimensionality of geometric objects manifests itself in numerous ways which do not exist in the case of points. We prove that the structural complexity of the order-k Voronoi diagram of non-crossing line segments is O(k(n-k)), as in the case of points. We study disjoint line segments, intersecting line segments, line segments forming a planar straight-line graph and extend the results to the Lp metric, 1<=p<=infty. We also establish the connection between two mathematical abstractions: abstract Voronoi diagrams and the Clarkson-Shor framework. We design several construction algorithms that cover the case of non-point sites. While computational geometry provides several approaches to study the structural complexity that give tight realizable bounds, developing an effective construction algorithm is still a challenging problem even for points. Most of the construction algorithms are designed to work with points as they utilize their simplicity and relations with data-structures that work specifically for points. We extend the iterative and the sweepline approaches that are quite efficient in constructing all order-i Voronoi diagrams, for i<=k and we also give three randomized construction algorithms for abstract higher-order Voronoi diagrams that deal specifically with the construction of the order-k Voronoi diagrams

    Surface Reconstruction through Time

    Get PDF
    Surface reconstruction is an area of computational geometry that has been progressing rapidly over the last decade. Current algorithms and their implementations can reconstruct surfaces from a variety of input and the accuracy and precision improve with each new development. These all make use of various heuristics to achieve a reconstruction. Much of this work consists of reconstructing a still object from point samples taken from the object\u27s surface. We examine reconstructing an n-dimensional object and its motion by treating time as an (n + 1)st axis. Our input consists of (n-1)-dimensional scans taken over time and at di?erent positions on the original object. This input is mapped into (n + 1) dimensions where the (n + 1)st dimension is a scaled time axis and then fed into an existing surface reconstruction algorithm. A cross section of the reconstructed surface perpendicular to the time axis yields an approximation to the shape of the n-dimensional surface at the corresponding point in time. The intended application for this work is the reconstruction of medical images from scanning technology such as MRI or CT into moving 3d surfaces. We investigate reconstructing 2d moving surfaces through time as a preliminary step towards the moving 3d problem. We spend most of our efforts in this thesis on the problem of computing a scaling factor for mapping time into the (n + 1)st axis to minimize the number of scans needed to meet the sampling requirements for an existing surface reconstruction algorithm. We give three bounds, based on features of the 2d moving object, that are necessary to accomplish this

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form a⋯b⋯a⋯b⋯a \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s≤3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs−1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron

    Get PDF
    The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the Blum medial axis, a well known skeletal representation. Voronoi diagrams and medial axes have been shown useful for many 3D computations and operations, including proximity queries, motion planning, mesh generation, finite element analysis, and shape analysis. However, their application to complex 3D polyhedral and deformable models has been limited. This is due to the difficulty of computing exact Voronoi diagrams in an efficient and reliable manner. In this dissertation, we bridge this gap by presenting efficient algorithms to compute discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geometric and topological guarantees. We apply these algorithms to complex 3D models and use them to perform interactive proximity queries, motion planning and skeletal computations. We present three new results. First, we describe an algorithm to compute 3D distance fields of geometric models by using a linear factorization of Euclidean distance vectors. This formulation maps directly to the linearly interpolating graphics rasterization hardware and enables us to compute distance fields of complex 3D models at interactive rates. We also use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate this computation. We introduce surface distance maps, which are a compact distance vector field representation based on a mesh parameterization of triangulated two-manifolds, and use them to perform proximity computations. Our second main result is an adaptive sampling algorithm to compute an approximate Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves topological features. We use this algorithm to compute a homotopy-preserving simplified medial axis of complex 3D models. Our third result is a unified approach to perform different proximity queries among multiple deformable models using second order discrete Voronoi diagrams. We introduce a new query called N-body distance query and show that different proximity queries, including collision detection, separation distance and penetration depth can be performed based on Nbody distance query. We compute the second order discrete Voronoi diagram using graphics hardware and use distance bounds to overcome the sampling errors and perform conservative computations. We have applied these queries to various deformable simulations and observed up to an order of magnitude improvement over prior algorithms
    • …
    corecore