4,044 research outputs found

    Convex Relaxations and Approximations of Chance-Constrained AC-OPF Problems

    Full text link
    This paper deals with the impact of linear approximations for the unknown nonconvex confidence region of chance-constrained AC optimal power flow problems. Such approximations are required for the formulation of tractable chance constraints. In this context, we introduce the first formulation of a chance-constrained second-order cone (SOC) OPF. The proposed formulation provides convergence guarantees due to its convexity, while it demonstrates high computational efficiency. Combined with an AC feasibility recovery, it is able to identify better solutions than chance-constrained nonconvex AC-OPF formulations. To the best of our knowledge, this paper is the first to perform a rigorous analysis of the AC feasibility recovery procedures for robust SOC-OPF problems. We identify the issues that arise from the linear approximations, and by using a reformulation of the quadratic chance constraints, we introduce new parameters able to reshape the approximation of the confidence region. We demonstrate our method on the IEEE 118-bus system

    Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

    Full text link
    Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today's power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature

    Regimes and Resilience in the Modern Global Food System

    Full text link
    Much public discourse surrounding the modern global food system operates on the assumption of the primary agency of individual consumers in ensuring an equitable and sustainable food supply. However, this approach fails to account for the larger structural forces of the system which frame the limits of how we interact with and are affected by our food system. Taking a closer look at the global economic, political, cultural, and environmental forces that have collectively shaped historical food regimes reveals the deeper structural patterns that currently determine how we produce, distribute, and consume food around the world. Due to the underlying structural processes of increasing distancing and standardization, we have become highly disembedded from our food system and will need to look for clues from past periods of transition between food regimes to better position ourselves to work towards a global restructuring of, and human reembedding in, the modern global food system

    The Price of Uncertainty: Chance-constrained OPF vs. In-hindsight OPF

    Full text link
    The operation of power systems has become more challenging due to feed-in of volatile renewable energy sources. Chance-constrained optimal power flow (ccOPF) is one possibility to explicitly consider volatility via probabilistic uncertainties resulting in mean-optimal feedback policies. These policies are computed before knowledge of the realization of the uncertainty is available. On the other hand, the hypothetical case of computing the power injections knowing every realization beforehand---called in-hindsight OPF(hOPF)---cannot be outperformed w.r.t. costs and constraint satisfaction. In this paper, we investigate how ccOPF feedback relates to the full-information hOPF. To this end, we introduce different dimensions of the price of uncertainty. Using mild assumptions on the uncertainty we present sufficient conditions when ccOPF is identical to hOPF. We suggest using the total variational distance of probability densities to quantify the performance gap of hOPF and ccOPF. Finally, we draw upon a tutorial example to illustrate our results.Comment: Accepted for publication at the 20th Power Systems Computation Conference (PSCC) in Dublin, 201

    Optimization Methods in Electric Power Systems: Global Solutions for Optimal Power Flow and Algorithms for Resilient Design under Geomagnetic Disturbances

    Get PDF
    An electric power system is a network of various components that generates and delivers power to end users. Since 1881, U.S. electric utilities have supplied power to billions of industrial, commercial, public, and residential customers continuously. Given the rapid growth of power utilities, power system optimization has evolved with developments in computing and optimization theory. In this dissertation, we focus on two optimization problems associated with power system planning: the AC optimal power flow (ACOPF) problem and the optimal transmission line switching (OTS) problem under geomagnetic disturbances (GMDs). The former problem is formulated as a nonlinear, non-convex network optimization problem, while the latter is the network design version of the ACOPF problem that allows topology reconfiguration and considers space weather-induced effects on power systems. Overall, the goal of this research includes: (1) developing computationally efficient approaches for the ACOPF problem in order to improve power dispatch efficiency and (2) identifying an optimal topology configuration to help ISO operate power systems reliably and efficiently under geomagnetic disturbances. Chapter 1 introduces the problems we are studying and motivates the proposed research. We present the ACOPF problem and the state-of-the-art solution methods developed in recent years. Next, we introduce geomagnetic disturbances and describe how they can impact electrical power systems. In Chapter 2, we revisit the polar power-voltage formulation of the ACOPF problem and focus on convex relaxation methods to develop lower bounds on the problem objective. Based on these approaches, we propose an adaptive, multivariate partitioning algorithm with bound tightening and heuristic branching strategies that progressively improves these relaxations and, given sufficient time, converges to the globally optimal solution. Computational results show that our methodology provides a computationally tractable approach to obtain tight relaxation bounds for hard ACOPF cases from the literature. In Chapter 3, we focus on the impact that extreme GMD events could potentially have on the ability of a power system to deliver power reliably. We develop a mixed-integer, nonlinear model which captures and mitigates GMD effects through line switching, generator dispatch, and load shedding. In addition, we present a heuristic algorithm that provides high-quality solutions quickly. Our work demonstrates that line switching is an effective way to mitigate GIC impacts. In Chapter 4, we extend the preliminary study presented in Chapter 3 and further consider the uncertain nature of GMD events. We propose a two-stage distributionally robust (DR) optimization model that captures geo-electric fields induced by uncertain GMDs. Additionally, we present a reformulation of a two-stage DRO that creates a decomposition framework for solving our problem. Computational results show that our DRO approach provides solutions that are robust to errors in GMD event predictions. Finally, in Chapter 5, we summarize the research contributions of our work and provide directions for future research
    corecore