206 research outputs found

    Tight RMR lower bounds for mutual exclusion and other problems

    Full text link

    A complexity separation between the cache-coherent and distributed shared memory models

    Full text link

    Progressive Transactional Memory in Time and Space

    Full text link
    Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared \emph{data items} into atomic transactions. A transaction may commit, in which case it appears to have executed sequentially or it may \emph{abort}, in which case no data item is updated. The TM programming paradigm emerged as an alternative to conventional fine-grained locking techniques, offering ease of programming and compositionality. Though typically themselves implemented using locks, TMs hide the inherent issues of lock-based synchronization behind a nice transactional programming interface. In this paper, we explore inherent time and space complexity of lock-based TMs, with a focus of the most popular class of \emph{progressive} lock-based TMs. We derive that a progressive TM might enforce a read-only transaction to perform a quadratic (in the number of the data items it reads) number of steps and access a linear number of distinct memory locations, closing the question of inherent cost of \emph{read validation} in TMs. We then show that the total number of \emph{remote memory references} (RMRs) that take place in an execution of a progressive TM in which nn concurrent processes perform transactions on a single data item might reach Ω(nlogn)\Omega(n \log n), which appears to be the first RMR complexity lower bound for transactional memory.Comment: Model of Transactional Memory identical with arXiv:1407.6876, arXiv:1502.0272

    An Almost Tight RMR Lower Bound for Abortable Test-And-Set

    Get PDF
    We prove a lower bound of Omega(log n/log log n) for the remote memory reference (RMR) complexity of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-set, as the latter has constant RMR complexity [Wojciech Golab et al., 2010]. Golab, Hendler, Hadzilacos and Woelfel [Wojciech M. Golab et al., 2012] showed that compare-and-swap can be implemented from registers and test-and-set objects with constant RMR complexity. We observe that a small modification to that implementation is abortable, provided that the used test-and-set objects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free implementations of test-and-set [George Giakkoupis and Philipp Woelfel, 2012], we obtain randomized abortable compare-and-swap objects with almost constant (O(log^* n)) RMR complexity

    Recoverable, Abortable, and Adaptive Mutual Exclusion with Sublogarithmic RMR Complexity

    Get PDF
    We present the first recoverable mutual exclusion (RME) algorithm that is simultaneously abortable, adaptive to point contention, and with sublogarithmic RMR complexity. Our algorithm has O(min(K,log_W N)) RMR passage complexity and O(F + min(K,log_W N)) RMR super-passage complexity, where K is the number of concurrent processes (point contention), W is the size (in bits) of registers, and F is the number of crashes in a super-passage. Under the standard assumption that W = ?(log N), these bounds translate to worst-case O((log N)/(log log N)) passage complexity and O(F + (log N)/(log log N)) super-passage complexity. Our key building blocks are: - A D-process abortable RME algorithm, for D ? W, with O(1) passage complexity and O(1+F) super-passage complexity. We obtain this algorithm by using the Fetch-And-Add (FAA) primitive, unlike prior work on RME that uses Fetch-And-Store (FAS/SWAP). - A generic transformation that transforms any abortable RME algorithm with passage complexity of B < W, into an abortable RME lock with passage complexity of O(min(K,B))

    Randomized versus Deterministic Implementations of Concurrent Data Structures

    Get PDF
    One of the key trends in computing over the past two decades has been increased distribution, both at the processor level, where multi-core architectures are now the norm, and at the system level, where many key services are currently distributed overmultiple machines. Thus, understanding the power and limitations of computing in a concurrent, distributed setting is one of the major challenges in Computer Science. In this thesis, we analyze the complexity of implementing concurrent data structures in asynchronous shared memory systems. We focus on the complexity of a classic distributed coordination task called renaming, in which a set of processes need to pick distinct names from a small set of identifiers. We present the first tight bounds for the time complexity of this problem, both for deterministic and randomized implementations, solving a long-standing open problem in the field. For deterministic algorithms, we prove a tight linear lower bound; for randomized solutions, we provide logarithmic upper and lower bounds on time complexity. Together, these results show an exponential separation between deterministic and randomized renaming solutions. Importantly, the lower bounds extend to implementations of practical shared-memory data structures, such as queues, stacks, and counters. From a technical perspective, this thesis highlights new connections between the distributed renaming problem and other fundamental objects, such as sorting networks, mutual exclusion, and counters. In particular, we show that sorting networks can be used to obtain optimal randomized solutions to renaming, and that, in turn, the existence of these solutions implies a linear lower bound on the complexity of the problem. In sum, the results in this thesis suggest that deterministic implementations of shared-memory data structures do not scale well in terms of worst-case time complexity. On the positive side, we emphasize randomization as a natural alternative, which can circumvent the deterministic lower bounds with high probability. Thus, a promising direction for future work is to extend our randomized renaming techniques to obtain efficient implementations of concurrent data structures
    corecore