1,414 research outputs found

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties

    Almost Symmetries and the Unit Commitment Problem

    Get PDF
    This thesis explores two main topics. The first is almost symmetry detection on graphs. The presence of symmetry in combinatorial optimization problems has long been considered an anathema, but in the past decade considerable progress has been made. Modern integer and constraint programming solvers have automatic symmetry detection built-in to either exploit or avoid symmetric regions of the search space. Automatic symmetry detection generally works by converting the input problem to a graph which is in exact correspondence with the problem formulation. Symmetry can then be detected on this graph using one of the excellent existing algorithms; these are also the symmetries of the problem formulation.The motivation for detecting almost symmetries on graphs is that almost symmetries in an integer program can force the solver to explore nearly symmetric regions of the search space. Because of the known correspondence between integer programming formulations and graphs, this is a first step toward detecting almost symmetries in integer programming formulations. Though we are only able to compute almost symmetries for graphs of modest size, the results indicate that almost symmetry is definitely present in some real-world combinatorial structures, and likely warrants further investigation.The second topic explored in this thesis is integer programming formulations for the unit commitment problem. The unit commitment problem involves scheduling power generators to meet anticipated energy demand while minimizing total system operation cost. Today, practitioners usually formulate and solve unit commitment as a large-scale mixed integer linear program.The original intent of this project was to bring the analysis of almost symmetries to the unit commitment problem. Two power generators are almost symmetric in the unit commitment problem if they have almost identical parameters. Along the way, however, new formulations for power generators were discovered that warranted a thorough investigation of their own. Chapters 4 and 5 are a result of this research.Thus this work makes three contributions to the unit commitment problem: a convex hull description for a power generator accommodating many types of constraints, an improved formulation for time-dependent start-up costs, and an exact symmetry reduction technique via reformulation

    A Stochastic Model for Self-scheduling Problem

    Get PDF
    The unit commitment (UC) problem is a typical application of optimization techniques in the power generation and operation. Given a planning horizon, the UC problem is to find an optimal schedule of generating units, including on/off status and production level of each generating unit at each time period, in order to minimize operational costs, subject to a series of technical constraints. Because technical constraints depend on the characteristics of energy systems, the formulations of the UC problem vary with energy systems. The self-scheduling problem is a variant of the UC problem for the power generating companies to maximize their profits in a deregulated energy market. The deterministic self-scheduling UC problem is known to be polynomial-time solvable using dynamic programming. In this thesis, a stochastic model for the self-scheduling UC problem is presented and an efficient dynamic programming algorithm for the deterministic model is extended to solve the stochastic model. Solutions are compared to those obtained by traditional mixed integer programming method, in terms of the solution time and solution quality. Computational results show that the extended algorithm can obtain an optimal solution faster than Gurobi mixed-integer quadratic solver when solving a stochastic self-scheduling UC problem with a large number of scenarios. Furthermore, the results of a simulation experiment show that solutions based on a large number of scenarios can generate more average revenue or less average loss

    Optimization Methods for Day Ahead Unit Commitment

    Get PDF
    This work examines a variety of optimization techniques to better solve the day ahead unit commitment problem. The first method looks at the impact of almost identical generators on the problem and how to exploit that fact for computational gain. The second work seeks to improve the fidelity of the problem by better modeling the impact of pumped storage hydropower. Lastly, the relationship between the length of the planning horizon and the quality of the solutions is investigated

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
    • …
    corecore