3,010 research outputs found

    Geometric Aspects of Frame Representations of Abelian Groups

    Full text link
    We consider frames arising from the action of a unitary representation of a discrete countable abelian group. We show that the range of the analysis operator can be determined by computing which characters appear in the representation. This allows one to compare the ranges of two such frames, which is useful for determining similarity and also for multiplexing schemes. Our results then partially extend to Bessel sequences arising from the action of the group. We apply the results to sampling on bandlimited functions and to wavelet and Weyl-Heisenberg frames. This yields a sufficient condition for two sampling transforms to have orthogonal ranges, and two analysis operators for wavelet and Weyl-Heisenberg frames to have orthogonal ranges. The sufficient condition is easy to compute in terms of the periodization of the Fourier transform of the frame generators.Comment: 20 pages; contact author: Eric Webe

    Nonhomogeneous Wavelet Systems in High Dimensions

    Full text link
    It is of interest to study a wavelet system with a minimum number of generators. It has been showed by X. Dai, D. R. Larson, and D. M. Speegle in [11] that for any d×dd\times d real-valued expansive matrix M, a homogeneous orthonormal M-wavelet basis can be generated by a single wavelet function. On the other hand, it has been demonstrated in [21] that nonhomogeneous wavelet systems, though much less studied in the literature, play a fundamental role in wavelet analysis and naturally link many aspects of wavelet analysis together. In this paper, we are interested in nonhomogeneous wavelet systems in high dimensions with a minimum number of generators. As we shall see in this paper, a nonhomogeneous wavelet system naturally leads to a homogeneous wavelet system with almost all properties preserved. We also show that a nonredundant nonhomogeneous wavelet system is naturally connected to refinable structures and has a fixed number of wavelet generators. Consequently, it is often impossible for a nonhomogeneous orthonormal wavelet basis to have a single wavelet generator. However, for redundant nonhomogeneous wavelet systems, we show that for any d×dd\times d real-valued expansive matrix M, we can always construct a nonhomogeneous smooth tight M-wavelet frame in L2(Rd)L_2(R^d) with a single wavelet generator whose Fourier transform is a compactly supported CC^\infty function. Moreover, such nonhomogeneous tight wavelet frames are associated with filter banks and can be modified to achieve directionality in high dimensions. Our analysis of nonhomogeneous wavelet systems employs a notion of frequency-based nonhomogeneous wavelet systems in the distribution space. Such a notion allows us to separate the perfect reconstruction property of a wavelet system from its stability in function spaces
    corecore