2,503 research outputs found

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme

    Sum Coloring : New upper bounds for the chromatic strength

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is derived from the Graph Coloring Problem (GCP) by associating a weight to each color. The aim of MSCP is to find a coloring solution of a graph such that the sum of color weights is minimum. MSCP has important applications in fields such as scheduling and VLSI design. We propose in this paper new upper bounds of the chromatic strength, i.e. the minimum number of colors in an optimal solution of MSCP, based on an abstraction of all possible colorings of a graph called motif. Experimental results on standard benchmarks show that our new bounds are significantly tighter than the previous bounds in general, allowing to reduce substantially the search space when solving MSCP .Comment: pre-prin

    A characterization and an application of weight-regular partitions of graphs

    Full text link
    A natural generalization of a regular (or equitable) partition of a graph, which makes sense also for non-regular graphs, is the so-called weight-regular partition, which gives to each vertex uVu\in V a weight that equals the corresponding entry νu\nu_u of the Perron eigenvector ν\mathbf{\nu}. This paper contains three main results related to weight-regular partitions of a graph. The first is a characterization of weight-regular partitions in terms of double stochastic matrices. Inspired by a characterization of regular graphs by Hoffman, we also provide a new characterization of weight-regularity by using a Hoffman-like polynomial. As a corollary, we obtain Hoffman's result for regular graphs. In addition, we show an application of weight-regular partitions to study graphs that attain equality in the classical Hoffman's lower bound for the chromatic number of a graph, and we show that weight-regularity provides a condition under which Hoffman's bound can be improved
    corecore