13,452 research outputs found

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes

    Quadrisecants give new lower bounds for the ropelength of a knot

    Full text link
    Using the existence of a special quadrisecant line, we show the ropelength of any nontrivial knot is at least 15.66. This improves the previously known lower bound of 12. Numerical experiments have found a trefoil with ropelength less than 16.372, so our new bounds are quite sharp.Comment: v3 is the version published by Geometry & Topology on 25 February 200

    β\beta-Stars or On Extending a Drawing of a Connected Subgraph

    Full text link
    We consider the problem of extending the drawing of a subgraph of a given plane graph to a drawing of the entire graph using straight-line and polyline edges. We define the notion of star complexity of a polygon and show that a drawing ΓH\Gamma_H of an induced connected subgraph HH can be extended with at most min{h/2,β+log2(h)+1}\min\{ h/2, \beta + \log_2(h) + 1\} bends per edge, where β\beta is the largest star complexity of a face of ΓH\Gamma_H and hh is the size of the largest face of HH. This result significantly improves the previously known upper bound of 72V(H)72|V(H)| [5] for the case where HH is connected. We also show that our bound is worst case optimal up to a small additive constant. Additionally, we provide an indication of complexity of the problem of testing whether a star-shaped inner face can be extended to a straight-line drawing of the graph; this is in contrast to the fact that the same problem is solvable in linear time for the case of star-shaped outer face [9] and convex inner face [13].Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Triangle areas in line arrangements

    Get PDF
    A widely investigated subject in combinatorial geometry, originated from Erd\H{o}s, is the following. Given a point set PP of cardinality nn in the plane, how can we describe the distribution of the determined distances? This has been generalized in many directions. In this paper we propose the following variants. Consider planar arrangements of nn lines. Determine the maximum number of triangles of unit area, maximum area or minimum area, determined by these lines. Determine the minimum size of a subset of these nn lines so that all triples determine distinct area triangles. We prove that the order of magnitude for the maximum occurrence of unit areas lies between Ω(n2)\Omega(n^2) and O(n9/4)O(n^{9/4}). This result is strongly connected to both additive combinatorial results and Szemer\'edi--Trotter type incidence theorems. Next we show a tight bound for the maximum number of minimum area triangles. Finally we present lower and upper bounds for the maximum area and distinct area problems by combining algebraic, geometric and combinatorial techniques.Comment: Title is shortened. Some typos and small errors were correcte
    corecore