743 research outputs found

    Teleportation, Braid Group and Temperley--Lieb Algebra

    Full text link
    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley--Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version of the preprint, quant-ph/0601050, which includes details of calculation, more topics such as topological diagrammatical operations and entanglement swapping, and calls the Temperley--Lieb category for the collection of all the Temperley--Lieb algebra with physical operations like local unitary transformation

    Quasi-probability representations of quantum theory with applications to quantum information science

    Full text link
    This article comprises a review of both the quasi-probability representations of infinite-dimensional quantum theory (including the Wigner function) and the more recently defined quasi-probability representations of finite-dimensional quantum theory. We focus on both the characteristics and applications of these representations with an emphasis toward quantum information theory. We discuss the recently proposed unification of the set of possible quasi-probability representations via frame theory and then discuss the practical relevance of negativity in such representations as a criteria for quantumness.Comment: v3: typos fixed, references adde

    Tight quantum teleportation without a shared reference frame

    Get PDF
    We present a new scheme for teleporting a quantum state between two parties whose local reference frames are misaligned by the action of a finite symmetry group. Unlike other proposals, our scheme requires the same amount of classical communication and entangled resources as conventional teleportation, does not reveal any reference frame information, and is robust against changes in reference frame alignment while the protocol is underway. The mathematical foundation of our scheme is a unitary error basis which is permuted up to a phase by the conjugation action of the group. We completely classify such unitary error bases for qubits, exhibit constructions in higher dimension, and provide a method for proving nonexistence in some cases.Comment: Clarified exposition and added extra figures. 24 pages, 5 figure

    Quantum entanglement theory in the presence of superselection rules

    Get PDF
    Superselection rules severly constrain the operations which can be implemented on a distributed quantum system. While the restriction to local operations and classical communication gives rise to entanglement as a nonlocal resource, particle number conservation additionally confines the possible operations and should give rise to a new resource. In [Phys. Rev. Lett. 92, 087904 (2004), quant-ph/0310124] we showed that this resource can be quantified by a single additional number, the superselection induced variance (SiV) without changing the concept of entanglement. In this paper, we give the results on pure states in greater detail; additionally, we provide a discussion of mixed state nonlocality with superselection rules where we consider both formation and distillation. Finally, we demonstrate that SiV is indeed a resource, i.e., that it captures how well a state can be used to overcome the restrictions imposed by the superselection rule.Comment: 16 pages, 5 figure

    Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas

    Get PDF
    In this paper we make an extensive description of quantum non-locality, one of the most intriguing and fascinating facets of quantum mechanics. After a general presentation of several studies on this subject, we consider if quantum non-locality, and the friction it carries with special relativity, can eventually find a "solution" by considering higher dimensional spaces.Comment: 1

    Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    Full text link
    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.Comment: 7 pages, 2 figures. I. F. previously published under I. Fuentes-Schuller and I. Fuentes-Guridi. v2: minor changes, published versio
    • …
    corecore