794 research outputs found

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes

    Get PDF
    In this work, we study the minimum/stopping distance of array low-density parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code specified by two integers q and m, where q is an odd prime and m <= q. In the literature, the minimum/stopping distance of these codes (denoted by d(q,m) and h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact results, for small values of q and m, and general (i.e., independent of q) bounds have been established. For m=6, the best known minimum distance upper bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002), is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <= 20 and a new upper bound d(q,7) <= 24 by using the concept of a template support matrix of a codeword/stopping set. The bounds are tight with high probability in the sense that we have not been able to find codewords of strictly lower weight for several values of q using a minimum distance probabilistic algorithm. Finally, we provide new specific minimum/stopping distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was presented in part at the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, June/July 201

    On the Minimum Distance of Array-Based Spatially-Coupled Low-Density Parity-Check Codes

    Full text link
    An array low-density parity-check (LDPC) code is a quasi-cyclic LDPC code specified by two integers qq and mm, where qq is an odd prime and m≀qm \leq q. The exact minimum distance, for small qq and mm, has been calculated, and tight upper bounds on it for m≀7m \leq 7 have been derived. In this work, we study the minimum distance of the spatially-coupled version of these codes. In particular, several tight upper bounds on the optimal minimum distance for coupling length at least two and m=3,4,5m=3,4,5, that are independent of qq and that are valid for all values of qβ‰₯q0q \geq q_0 where q0q_0 depends on mm, are presented. Furthermore, we show by exhaustive search that by carefully selecting the edge spreading or unwrapping procedure, the minimum distance (when qq is not very large) can be significantly increased, especially for m=5m=5.Comment: 5 pages. To be presented at the 2015 IEEE International Symposium on Information Theory, June 14-19, 2015, Hong Kon

    Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance

    Full text link
    We examine LDPC codes decoded using linear programming (LP). Four contributions to the LP framework are presented. First, a new method of tightening the LP relaxation, and thus improving the LP decoder, is proposed. Second, we present an algorithm which calculates a lower bound on the minimum distance of a specific code. This algorithm exhibits complexity which scales quadratically with the block length. Third, we propose a method to obtain a tight lower bound on the fractional distance, also with quadratic complexity, and thus less than previously-existing methods. Finally, we show how the fundamental LP polytope for generalized LDPC codes and nonbinary LDPC codes can be obtained.Comment: 17 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    Characterization and Efficient Search of Non-Elementary Trapping Sets of LDPC Codes with Applications to Stopping Sets

    Full text link
    In this paper, we propose a characterization for non-elementary trapping sets (NETSs) of low-density parity-check (LDPC) codes. The characterization is based on viewing a NETS as a hierarchy of embedded graphs starting from an ETS. The characterization corresponds to an efficient search algorithm that under certain conditions is exhaustive. As an application of the proposed characterization/search, we obtain lower and upper bounds on the stopping distance smins_{min} of LDPC codes. We examine a large number of regular and irregular LDPC codes, and demonstrate the efficiency and versatility of our technique in finding lower and upper bounds on, and in many cases the exact value of, smins_{min}. Finding smins_{min}, or establishing search-based lower or upper bounds, for many of the examined codes are out of the reach of any existing algorithm

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118
    • …
    corecore