6,180 research outputs found

    Linear/Quadratic Programming-Based Optimal Power Flow using Linear Power Flow and Absolute Loss Approximations

    Full text link
    This paper presents novel methods to approximate the nonlinear AC optimal power flow (OPF) into tractable linear/quadratic programming (LP/QP) based OPF problems that can be used for power system planning and operation. We derive a linear power flow approximation and consider a convex reformulation of the power losses in the form of absolute value functions. We show four ways how to incorporate this approximation into LP/QP based OPF problems. In a comprehensive case study the usefulness of our OPF methods is analyzed and compared with an existing OPF relaxation and approximation method. As a result, the errors on voltage magnitudes and angles are reasonable, while obtaining near-optimal results for typical scenarios. We find that our methods reduce significantly the computational complexity compared to the nonlinear AC-OPF making them a good choice for planning purposes

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model

    Full text link
    In modern wireless networks, devices are able to set the power for each transmission carried out. Experimental but also theoretical results indicate that such power control can improve the network capacity significantly. We study this problem in the physical interference model using SINR constraints. In the SINR capacity maximization problem, we are given n pairs of senders and receivers, located in a metric space (usually a so-called fading metric). The algorithm shall select a subset of these pairs and choose a power level for each of them with the objective of maximizing the number of simultaneous communications. This is, the selected pairs have to satisfy the SINR constraints with respect to the chosen powers. We present the first algorithm achieving a constant-factor approximation in fading metrics. The best previous results depend on further network parameters such as the ratio of the maximum and the minimum distance between a sender and its receiver. Expressed only in terms of n, they are (trivial) Omega(n) approximations. Our algorithm still achieves an O(log n) approximation if we only assume to have a general metric space rather than a fading metric. Furthermore, by using standard techniques the algorithm can also be used in single-hop and multi-hop scheduling scenarios. Here, we also get polylog(n) approximations.Comment: 17 page
    • …
    corecore