796 research outputs found

    Equivalence Classes and Conditional Hardness in Massively Parallel Computations

    Get PDF
    The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., P ? NP), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(log N)), and some standard classes concerning space complexity, namely L and NL, and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4â‹…n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    The maximum disjoint paths problem on multi-relations social networks

    Get PDF
    Motivated by applications to social network analysis (SNA), we study the problem of finding the maximum number of disjoint uni-color paths in an edge-colored graph. We show the NP-hardness and the approximability of the problem, and both approximation and exact algorithms are proposed. Since short paths are much more significant in SNA, we also study the length-bounded version of the problem, in which the lengths of paths are required to be upper bounded by a fixed integer ll. It is shown that the problem can be solved in polynomial time for l=3l=3 and is NP-hard for l≥4l\geq 4. We also show that the problem can be approximated with ratio (l−1)/2+ϵ(l-1)/2+\epsilon in polynomial time for any ϵ>0\epsilon >0. Particularly, for l=4l=4, we develop an efficient 2-approximation algorithm

    On Diameter Approximation in Directed Graphs

    Get PDF
    Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-?} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-?)-approximation would imply a breakthrough algorithm for approximate ?_?-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH

    On Computing the Average Distance for Some Chordal-Like Graphs

    Get PDF
    The Wiener index of a graph G is the sum of all its distances. Up to renormalization, it is also the average distance in G. The problem of computing this parameter has different applications in chemistry and networks. We here study when it can be done in truly subquadratic time (in the size n+m of the input) on n-vertex m-edge graphs. Our main result is a complete answer to this question, assuming the Strong Exponential-Time Hypothesis (SETH), for all the hereditary subclasses of chordal graphs. Interestingly, the exact same result also holds for the diameter problem. The case of non-hereditary chordal subclasses happens to be more challenging. For the chordal Helly graphs we propose an intricate O?(m^{3/2})-time algorithm for computing the Wiener index, where m denotes the number of edges. We complete our results with the first known linear-time algorithm for this problem on the dually chordal graphs. The former algorithm also computes the median set
    • …
    corecore