11 research outputs found

    Highly Symmetric Multiple Bi-Frames for Curve and Surface Multiresolution Processing

    Get PDF
    Wavelets and wavelet frames are important and useful mathematical tools in numerous applications, such as signal and image processing, and numerical analysis. Recently, the theory of wavelet frames plays an essential role in signal processing, image processing, sampling theory, and harmonic analysis. However, multiwavelets and multiple frames are more flexible and have more freedom in their construction which can provide more desired properties than the scalar case, such as short compact support, orthogonality, high approximation order, and symmetry. These properties are useful in several applications, such as curve and surface noise-removing as studied in this dissertation. Thus, the study of multiwavelets and multiple frames construction has more advantages for many applications. Recently, the construction of highly symmetric bi-frames for curve and surface multiresolution processing has been investigated. The 6-fold symmetric bi-frames, which lead to highly symmetric analysis and synthesis bi-frame algorithms, have been introduced. Moreover, these multiple bi-frame algorithms play an important role on curve and surface multiresolution processing. This dissertation is an extension of the study of construction of univariate biorthogonal wavelet frames (bi-frames for short) or dual wavelet frames with each framelet being symmetric in the scalar case. We will expand the study of biorthogonal wavelets and bi-frames construction from the scalar case to the vector case to construct biorthogonal multiwavelets and multiple bi-frames in one-dimension. In addition, we will extend the study of highly symmetric bi-frames for triangle surface multiresolution processing from the scalar case to the vector case. More precisely, the objective of this research is to construct highly symmetric biorthogonal multiwavelets and multiple bi-frames in one and two dimensions for curve and surface multiresolution processing. It runs in parallel with the scalar case. We mainly present the methods of constructing biorthogonal multiwavelets and multiple bi-frames in both dimensions by using the idea of lifting scheme. On the whole, we discuss several topics include a brief introduction and discussion of multiwavelets theory, multiresolution analysis, scalar wavelet frames, multiple frames, and the lifting scheme. Then, we present and discuss some results of one-dimensional biorthogonal multiwavelets and multiple bi-frames for curve multiresolution processing with uniform symmetry: type I and type II along with biorthogonality, sum rule orders, vanishing moments, and uniform symmetry for both types. In addition, we present and discuss some results of two-dimensional biorthogonal multiwavelets and multiple bi-frames and the multiresolution algorithms for surface multiresolution processing. Finally, we show experimental results on curve and surface noise-removing by applying our multiple bi-frame algorithms

    Minimum-Energy Bivariate Wavelet Frame with Arbitrary Dilation Matrix

    Get PDF
    In order to characterize the bivariate signals, minimum-energy bivariate wavelet frames with arbitrary dilation matrix are studied, which are based on superiority of the minimum-energy frame and the significant properties of bivariate wavelet. Firstly, the concept of minimum-energy bivariate wavelet frame is defined, and its equivalent characterizations and a necessary condition are presented. Secondly, based on polyphase form of symbol functions of scaling function and wavelet function, two sufficient conditions and an explicit constructed method are given. Finally, the decomposition algorithm, reconstruction algorithm, and numerical examples are designed

    A family of nonseparable scaling functions and compactly supported tight framelets

    Get PDF
    Given integers b and d, with d>1 and |b|>1, we construct even nonseparable compactly supported refinable functions with dilation factor bb that generate multiresolution analyses on L2(Rd). These refinable functions are nonseparable, in the sense that they cannot be expressed as the product of two functions defined on lower dimensions. We use these scaling functions and a slight generalization of a theorem of Lai and Stöckler to construct smooth compactly supported tight framelets. Both the refinable functions and the framelets they generate can be made as smooth as desired. Estimates for the supports of these refinable functions and framelets, are given.The first author was partially supported by Spanish Science Ministry grant JC2010-0012

    The Construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes

    Get PDF
    Wavelet analysis and its fast algorithms are widely used in many fields of applied mathematics such as in signal and image processing. In the present thesis, we circumvent the restrictions of orthogonal and biorthogonal wavelet bases by constructing wavelet frames. They still allow for a stable decomposition, and so-called wavelet bi-frames provide a series expansion very similar to those of pairs of biorthogonal wavelet bases. Contrary to biorthogonal bases, primal and dual wavelets are no longer supposed to satisfy any geometrical conditions, and the frame setting allows for redundancy. This provides more flexibility in their construction. Finally, we construct families of optimal wavelet bi-frames in arbitrary dimensions with arbitrarily high smoothness. Then we verify that the n-term approximation can be described by Besov spaces and we apply the theoretical findings to image denoising

    Multidimensional Wavelets and Computer Vision

    Get PDF
    This report deals with the construction and the mathematical analysis of multidimensional nonseparable wavelets and their efficient application in computer vision. In the first part, the fundamental principles and ideas of multidimensional wavelet filter design such as the question for the existence of good scaling matrices and sensible design criteria are presented and extended in various directions. Afterwards, the analytical properties of these wavelets are investigated in some detail. It will turn out that they are especially well-suited to represent (discretized) data as well as large classes of operators in a sparse form - a property that directly yields efficient numerical algorithms. The final part of this work is dedicated to the application of the developed methods to the typical computer vision problems of nonlinear image regularization and the computation of optical flow in image sequences. It is demonstrated how the wavelet framework leads to stable and reliable results for these problems of generally ill-posed nature. Furthermore, all the algorithms are of order O(n) leading to fast processing

    Wavelet Frames: Symmetry, Periodicity, and Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Acta Universitatis Sapientiae - Mathematica 2017

    Get PDF
    corecore