68 research outputs found

    The minimum vertex degree for an almost-spanning tight cycle in a 33-uniform hypergraph

    Get PDF
    We prove that any 33-uniform hypergraph whose minimum vertex degree is at least (59+o(1))(n2)\left(\frac{5}{9} + o(1) \right)\binom{n}{2} admits an almost-spanning tight cycle, that is, a tight cycle leaving o(n)o(n) vertices uncovered. The bound on the vertex degree is asymptotically best possible. Our proof uses the hypergraph regularity method, and in particular a recent version of the hypergraph regularity lemma proved by Allen, B\"ottcher, Cooley and Mycroft.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1411.495

    Hamilton cycles in hypergraphs below the Dirac threshold

    Get PDF
    We establish a precise characterisation of 44-uniform hypergraphs with minimum codegree close to n/2n/2 which contain a Hamilton 22-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton 22-cycles in 44-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a 44-uniform hypergraph HH with minimum codegree close to n/2n/2, either finds a Hamilton 22-cycle in HH or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in kk-uniform hypergraphs HH for k≥3k \geq 3, giving a series of reductions to show that it is NP-hard to determine whether a kk-uniform hypergraph HH with minimum degree δ(H)≥12∣V(H)∣−O(1)\delta(H) \geq \frac{1}{2}|V(H)| - O(1) contains a tight Hamilton cycle. It is therefore unlikely that a similar characterisation can be obtained for tight Hamilton cycles.Comment: v2: minor revisions in response to reviewer comments, most pseudocode and details of the polynomial time reduction moved to the appendix which will not appear in the printed version of the paper. To appear in Journal of Combinatorial Theory, Series

    Hamilton cycles in quasirandom hypergraphs

    Get PDF
    We show that, for a natural notion of quasirandomness in kk-uniform hypergraphs, any quasirandom kk-uniform hypergraph on nn vertices with constant edge density and minimum vertex degree Ω(nk−1)\Omega(n^{k-1}) contains a loose Hamilton cycle. We also give a construction to show that a kk-uniform hypergraph satisfying these conditions need not contain a Hamilton ℓ\ell-cycle if k−ℓk-\ell divides kk. The remaining values of ℓ\ell form an interesting open question.Comment: 18 pages. Accepted for publication in Random Structures & Algorithm

    On powers of tight Hamilton cycles in randomly perturbed hypergraphs

    Full text link
    We show that for k≥3k \geq 3, r≥2r\geq 2 and α>0\alpha> 0, there exists ε>0\varepsilon > 0 such that if p=p(n)≥n−(k+r−2k−1)−1−εp=p(n)\geq n^{-{\binom{k+r-2}{k-1}}^{-1}-\varepsilon} and HH is a kk-uniform hypergraph on nn vertices with minimum codegree at least αn\alpha n, then asymptotically almost surely the union H∪G(k)(n,p)H\cup G^{(k)}(n,p) contains the rthr^{th} power of a tight Hamilton cycle. The bound on pp is optimal up to the value of ε\varepsilon and this answers a question of Bedenknecht, Han, Kohayakawa and Mota

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    • …
    corecore