310 research outputs found

    Tight Bounds for the Price of Anarchy of Simultaneous First Price Auctions

    Get PDF
    We study the Price of Anarchy of simultaneous first-price auctions for buyers with submodular and subadditive valuations. The current best upper bounds for the Bayesian Price of Anarchy of these auctions are e/(e-1) [Syrgkanis and Tardos 2013] and 2 [Feldman et al. 2013], respectively. We provide matching lower bounds for both cases even for the case of full information and for mixed Nash equilibria via an explicit construction. We present an alternative proof of the upper bound of e/(e-1) for first-price auctions with fractionally subadditive valuations which reveals the worst-case price distribution, that is used as a building block for the matching lower bound construction. We generalize our results to a general class of item bidding auctions that we call bid-dependent auctions (including first-price auctions and all-pay auctions) where the winner is always the highest bidder and each bidder's payment depends only on his own bid. Finally, we apply our techniques to discriminatory price multi-unit auctions. We complement the results of [de Keijzer et al. 2013] for the case of subadditive valuations, by providing a matching lower bound of 2. For the case of submodular valuations, we provide a lower bound of 1.109. For the same class of valuations, we were able to reproduce the upper bound of e/(e-1) using our non-smooth approach.Comment: 37 pages, 5 figures, ACM Transactions on Economics and Computatio

    Simple combinatorial auctions with budget constraints

    Get PDF
    We study the efficiency of simple combinatorial auctions for the allocation of a set of items to a set of agents, with private subadditive valuation functions and budget constraints. The class we consider includes all auctions that allocate each item independently to the agent that submits the highest bid for it, and requests a payment that depends on the bids of all agents only for this item. Two well-known examples of this class are the simultaneous first and second price auctions. We focus on the pure equilibria of the induced strategic games, and using the liquid welfare as our efficiency benchmark, we show an upper bound of 2 on the price of anarchy for any auction in this class, as well as a tight corresponding lower bound on the price of stability for all auctions whose payment rules are convex combinations of the bids. This implies a tight bound of 2 on the price of stability of the well-known simultaneous first and second price auctions, which are members of the class. Additionally, we show lower bounds for the whole class, for more complex auctions (like VCG), and for settings where the budgets are assumed to be common knowledge rather than private information

    On the Inefficiency of the Uniform Price Auction

    Full text link
    We present our results on Uniform Price Auctions, one of the standard sealed-bid multi-unit auction formats, for selling multiple identical units of a single good to multi-demand bidders. Contrary to the truthful and economically efficient multi-unit Vickrey auction, the Uniform Price Auction encourages strategic bidding and is socially inefficient in general. The uniform pricing rule is, however, widely popular by its appeal to the natural anticipation, that identical items should be identically priced. In this work we study equilibria of the Uniform Price Auction for bidders with (symmetric) submodular valuation functions, over the number of units that they win. We investigate pure Nash equilibria of the auction in undominated strategies; we produce a characterization of these equilibria that allows us to prove that a fraction 1-1/e of the optimum social welfare is always recovered in undominated pure Nash equilibrium -- and this bound is essentially tight. Subsequently, we study the auction under the incomplete information setting and prove a bound of 4-2/k on the economic inefficiency of (mixed) Bayes Nash equilibria that are supported by undominated strategies.Comment: Additions and Improvements upon SAGT 2012 results (and minor corrections on the previous version

    On the Efficiency of the Proportional Allocation Mechanism for Divisible Resources

    Get PDF
    We study the efficiency of the proportional allocation mechanism, that is widely used to allocate divisible resources. Each agent submits a bid for each divisible resource and receives a fraction proportional to her bids. We quantify the inefficiency of Nash equilibria by studying the Price of Anarchy (PoA) of the induced game under complete and incomplete information. When agents' valuations are concave, we show that the Bayesian Nash equilibria can be arbitrarily inefficient, in contrast to the well-known 4/3 bound for pure equilibria. Next, we upper bound the PoA over Bayesian equilibria by 2 when agents' valuations are subadditive, generalizing and strengthening previous bounds on lattice submodular valuations. Furthermore, we show that this bound is tight and cannot be improved by any simple or scale-free mechanism. Then we switch to settings with budget constraints, and we show an improved upper bound on the PoA over coarse-correlated equilibria. Finally, we prove that the PoA is exactly 2 for pure equilibria in the polyhedral environment.Comment: To appear in SAGT 201
    • …
    corecore