568 research outputs found

    Bounds on monotone switching networks for directed connectivity

    Full text link
    We separate monotone analogues of L and NL by proving that any monotone switching network solving directed connectivity on nn vertices must have size at least n(Ω(lg(n)))n^(\Omega(\lg(n))).Comment: 49 pages, 12 figure

    Average case lower bounds for monotone switching networks.

    Get PDF
    Abstract-An approximate computation of a Boolean function by a circuit or switching network is a computation in which the function is computed correctly on the majority of the inputs (rather than on all inputs). Besides being interesting in their own right, lower bounds for approximate computation have proved useful in many subareas of complexity theory, such as cryptography and derandomization. Lower bounds for approximate computation are also known as correlation bounds or average case hardness. In this paper, we obtain the first average case monotone depth lower bounds for a function in monotone P. We tolerate errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average case exponential lower bounds on the size of monotone switching networks for the GEN function. As a corollary, we separate the monotone NC hierarchy in the case of errors -a result which was previously only known for exact computations. Our proof extends and simplifies the Fourier analytic technique due to Potechin [21], and further developed by Chan and Potechi

    Average Case Lower Bounds for Monotone Switching Networks

    Get PDF
    An approximate computation of a function f : {0, 1} n → {0, 1} by a computaional model M is a computation in which M computes f correctly on the majority of the inputs (rather than on all inputs). Lower bounds for approximate computations are also known as average case hardness results. We obtain the first average case monotone depth lower bounds for a function in monotone P, tolerating errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average case exponential lower bounds on the size of monotone switching networks for the GEN function. As a corollary, we establish that for every i, there are functions computed with no error in monotone NC i+1 , but that cannot be computed without large error by monotone circuits in NC i

    What Circuit Classes Can Be Learned with Non-Trivial Savings?

    Get PDF
    Despite decades of intensive research, efficient - or even sub-exponential time - distribution-free PAC learning algorithms are not known for many important Boolean function classes. In this work we suggest a new perspective on these learning problems, inspired by a surge of recent research in complexity theory, in which the goal is to determine whether and how much of a savings over a naive 2^n runtime can be achieved. We establish a range of exploratory results towards this end. In more detail, (1) We first observe that a simple approach building on known uniform-distribution learning results gives non-trivial distribution-free learning algorithms for several well-studied classes including AC0, arbitrary functions of a few linear threshold functions (LTFs), and AC0 augmented with mod_p gates. (2) Next we present an approach, based on the method of random restrictions from circuit complexity, which can be used to obtain several distribution-free learning algorithms that do not appear to be achievable by approach (1) above. The results achieved in this way include learning algorithms with non-trivial savings for LTF-of-AC0 circuits and improved savings for learning parity-of-AC0 circuits. (3) Finally, our third contribution is a generic technique for converting lower bounds proved using Neciporuk\u27s method to learning algorithms with non-trivial savings. This technique, which is the most involved of our three approaches, yields distribution-free learning algorithms for a range of classes where previously even non-trivial uniform-distribution learning algorithms were not known; these classes include full-basis formulas, branching programs, span programs, etc. up to some fixed polynomial size

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Full text link
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph GG can be reversibly pebbled in time tt and space ss if and only if there is a Nullstellensatz refutation of the pebbling formula over GG in size t+1t+1 and degree ss (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system
    corecore