1,439 research outputs found

    A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

    Full text link
    We consider two fundamental tasks in quantum information theory, data compression with quantum side information as well as randomness extraction against quantum side information. We characterize these tasks for general sources using so-called one-shot entropies. We show that these characterizations - in contrast to earlier results - enable us to derive tight second order asymptotics for these tasks in the i.i.d. limit. More generally, our derivation establishes a hierarchy of information quantities that can be used to investigate information theoretic tasks in the quantum domain: The one-shot entropies most accurately describe an operational quantity, yet they tend to be difficult to calculate for large systems. We show that they asymptotically agree up to logarithmic terms with entropies related to the quantum and classical information spectrum, which are easier to calculate in the i.i.d. limit. Our techniques also naturally yields bounds on operational quantities for finite block lengths.Comment: See also arXiv:1208.1400, which independently derives part of our result: the second order asymptotics for binary hypothesis testin

    On the Distributed Compression of Quantum Information

    Get PDF
    The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian–Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Concise Security Bounds for Practical Decoy-State Quantum Key Distribution

    Full text link
    Due to its ability to tolerate high channel loss, decoy-state quantum key distribution (QKD) has been one of the main focuses within the QKD community. Notably, several experimental groups have demonstrated that it is secure and feasible under real-world conditions. Crucially, however, the security and feasibility claims made by most of these experiments were obtained under the assumption that the eavesdropper is restricted to particular types of attacks or that the finite-key effects are neglected. Unfortunately, such assumptions are not possible to guarantee in practice. In this work, we provide concise and tight finite-key security bounds for practical decoy-state QKD that are valid against general attacks.Comment: 5+3 pages and 2 figure
    • …
    corecore