2,907 research outputs found

    On the Randi\'{c} index and conditional parameters of a graph

    Full text link
    The aim of this paper is to study some parameters of simple graphs related with the degree of the vertices. So, our main tool is the n×nn\times n matrix A{\cal A} whose (i,ji,j)-entry is aij={1δiδjifvi∼vj;0otherwise, a_{ij}= \left\lbrace \begin{array}{ll} \frac{1}{\sqrt{\delta_i\delta_j}} & {\rm if }\quad v_i\sim v_j ; \\ 0 & {\rm otherwise,} \end{array} \right. where δi\delta_i denotes the degree of the vertex viv_i. We study the Randi\'{c} index and some interesting particular cases of conditional excess, conditional Wiener index, and conditional diameter. In particular, using the matrix A{\cal A} or its eigenvalues, we obtain tight bounds on the studied parameters.Comment: arXiv admin note: text overlap with arXiv:math/060243

    Bounds on separated pairs of subgraphs, eigenvalues and related polynomials

    Get PDF
    We give a bound on the sizes of two sets of vertices at a given minimum distance (a separated pair of subgraphs) in a graph in terms of polynomials and the spectrum of the graph. We find properties of the polynomial optimizing the bound. Explicit bounds on the number of vertices at maximal distance and distance two from a given vertex, and on the size of two equally large sets at maximal distance are given, and we find graphs for which the bounds are tight.Graphs;Eigenvalues;Polynomials;mathematics

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    Graphs and networks theory

    Get PDF
    This chapter discusses graphs and networks theory
    • …
    corecore