114 research outputs found

    Farthest-Polygon Voronoi Diagrams

    Get PDF
    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region

    A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

    Full text link
    In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point tt and a cluster PP is measured as the maximum distance between tt and any point in PP, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider %El."non-crossing" \emph{non-crossing} clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, nn, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)O(n\log^2{n}) time and expected O(n)O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.Comment: arXiv admin note: substantial text overlap with arXiv:1306.583

    On the hausdorff and other cluster Voronoi diagrams

    Get PDF
    The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand various generalizations of this simple concept. While many generalized Voronoi diagrams have been well studied, many others still have unsettled questions. An example of the latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather than individual objects. In this dissertation we study certain cluster Voronoi diagrams from the perspective of their construction algorithms and algorithmic applications. Our main focus is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi diagram, as well as certain special cases of the farthest-color Voronoi diagram. We establish a connection between cluster Voronoi diagrams and the stabbing circle problem for segments in the plane. Our results are as follows. (1) We investigate the randomized incremental construction of the Hausdorff Voronoi diagram. We consider separately the case of non-crossing clusters, when the combinatorial complexity of the diagram is O(n) where n is the total number of points in all clusters. For this case, we present two construction algorithms that require O(n log2 n) expected time. For the general case of arbitrary clusters, we present an algorithm that requires O((m + n log n) log n) expected time and O(m + n log n) expected space, where m is a parameter reflecting the number of crossings between clusters' convex hulls. (2) We present an O(n) time algorithm to construct the farthest-segment Voronoi diagram of n segments, after the sequence of its faces at infinity is known. This augments the well-known linear-time framework for Voronoi diagram of points in convex position, with the ability to handle disconnected Voronoi regions. (3) We establish a connection between the cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This implies a new method to solve the latter problem. Our method results in a near-optimal O(n log2 n) time algorithm for a set of n parallel segments, and in an optimal O(n log n) time algorithm for a set of n segments satisfying some other special conditions. (4) We study the farthest-color Voronoi diagram in special cases considered by the stabbing circle problem. We prove O(n) bound for its combinatorial complexity and present an O(nlogn) time algorithm to construct it

    New Results on Abstract Voronoi Diagrams

    Get PDF
    Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O(s2 n ∑3 ≤ j ≤ n mj / j), where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj =1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O(s2 n log(max{s,n}) ∑2 ≤ j≤ n mj / j). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are many subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k (n-k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remains O(k(n-k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to come up with proofs of purely topological and combinatorial nature of Jordan curves and certain permutation sequences, and hence we could show that also the order-k abstract Voronoi diagram has complexity O(k (n-k)), assuming that bisectors are unbounded, and the order-1 regions are connected. Finally, we discuss Voronoi diagrams having the shape of a tree or forest. Aggarwal et. al. showed that if points are in convex position, then given their ordering along the convex hull, their Voronoi diagram, which is a tree, can be computed in linear time. Klein and Lingas have generalized this idea to Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each Voronoi region with respect to any subset of sites exactly once. If the ordering of the regions along the curve is known in advance, all Voronoi regions are connected, and all bisectors are unbounded, then the abstract Voronoi diagram can be computed in linear time. This algorithm also applies to diagrams which are trees for all subsets of sites and the ordering of the unbounded regions around the diagram is known. In this thesis we go one step further and allow the diagram to be a forest for subsets of sites as long as the complete diagram is a tree. We show that also these diagrams can be computed in linear time

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Closest and Farthest-Line Voronoi Diagrams in the Plane

    Get PDF
    Voronoi diagrams are a geometric structure containing proximity information useful in efficiently answering a number of common geometric problems associated with a set of points in the plane.. They have applications in fields ranging from crystallography to biology. Diagrams of sites other than points and with different distance metrics have been studied. This paper examines the Voronoi diagram of a set of lines, which has escaped study in the computational geometry literature. The combinatorial and topological properties of the closest and farthest Voronoi diagrams are analyzed and O(n^2) and O(n log n) algorithms are presented for their computation respectively

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Moving Walkways, Escalators, and Elevators

    Full text link
    We study a simple geometric model of transportation facility that consists of two points between which the travel speed is high. This elementary definition can model shuttle services, tunnels, bridges, teleportation devices, escalators or moving walkways. The travel time between a pair of points is defined as a time distance, in such a way that a customer uses the transportation facility only if it is helpful. We give algorithms for finding the optimal location of such a transportation facility, where optimality is defined with respect to the maximum travel time between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional, Valladolid, Spai
    corecore