11 research outputs found

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    Sécurité physique de la cryptographie sur courbes elliptiques

    Get PDF
    Elliptic Curve Cryptography (ECC) has gained much importance in smart cards because of its higher speed and lower memory needs compared with other asymmetric cryptosystems such as RSA. ECC is believed to be unbreakable in the black box model, where the cryptanalyst has access to inputs and outputs only. However, it is not enough if the cryptosystem is embedded on a device that is physically accessible to potential attackers. In addition to inputs and outputs, the attacker can study the physical behaviour of the device. This new kind of cryptanalysis is called Physical Cryptanalysis. This thesis focuses on physical cryptanalysis of ECC. The first part gives the background on ECC. From the lowest to the highest level, ECC involves a hierarchy of tools: Finite Field Arithmetic, Elliptic Curve Arithmetic, Elliptic Curve Scalar Multiplication and Cryptographie Protocol. The second part exhibits a state-of-the-art of the different physical attacks and countermeasures on ECC.For each attack, the context on which it can be applied is given while, for each countermeasure, we estimate the lime and memory cost. We propose new attacks and new countermeasures. We then give a clear synthesis of the attacks depending on the context. This is useful during the task of selecting the countermeasures. Finally, we give a clear synthesis of the efficiency of each countermeasure against the attacks.La Cryptographie sur les Courbes Elliptiques (abréviée ECC de l'anglais Elliptic Curve Cryptography) est devenue très importante dans les cartes à puces car elle présente de meilleures performances en temps et en mémoire comparée à d'autres cryptosystèmes asymétriques comme RSA. ECC est présumé incassable dans le modèle dit « Boite Noire », où le cryptanalyste a uniquement accès aux entrées et aux sorties. Cependant, ce n'est pas suffisant si le cryptosystème est embarqué dans un appareil qui est physiquement accessible à de potentiels attaquants. En plus des entrés et des sorties, l'attaquant peut étudier le comportement physique de l'appareil. Ce nouveau type de cryptanalyse est appelé cryptanalyse physique. Cette thèse porte sur les attaques physiques sur ECC. La première partie fournit les pré-requis sur ECC. Du niveau le plus bas au plus élevé, ECC nécessite les outils suivants : l'arithmétique sur les corps finis, l'arithmétique sur courbes elliptiques, la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques. La deuxième partie expose un état de l'art des différentes attaques physiques et contremesures sur ECC. Pour chaque attaque, nous donnons le contexte dans lequel elle est applicable. Pour chaque contremesure, nous estimons son coût en temps et en mémoire. Nous proposons de nouvelles attaques et de nouvelles contremesures. Ensuite, nous donnons une synthèse claire des attaques suivant le contexte. Cette synthèse est utile pendant la tâche du choix des contremesures. Enfin, une synthèse claire de l'efficacité de chaque contremesure sur les attaques est donnée

    Side-Channel Analysis and Cryptography Engineering : Getting OpenSSL Closer to Constant-Time

    Get PDF
    As side-channel attacks reached general purpose PCs and started to be more practical for attackers to exploit, OpenSSL adopted in 2005 a flagging mechanism to protect against SCA. The opt-in mechanism allows to flag secret values, such as keys, with the BN_FLG_CONSTTIME flag. Whenever a flag is checked and detected, the library changes its execution flow to SCA-secure functions that are slower but safer, protecting these secret values from being leaked. This mechanism favors performance over security, it is error-prone, and is obscure for most library developers, increasing the potential for side-channel vulnerabilities. This dissertation presents an extensive side-channel analysis of OpenSSL and criticizes its fragile flagging mechanism. This analysis reveals several flaws affecting the library resulting in multiple side-channel attacks, improved cache-timing attack techniques, and a new side channel vector. The first part of this dissertation introduces the main topic and the necessary related work, including the microarchitecture, the cache hierarchy, and attack techniques; then it presents a brief troubled history of side-channel attacks and defenses in OpenSSL, setting the stage for the related publications. This dissertation includes seven original publications contributing to the area of side-channel analysis, microarchitecture timing attacks, and applied cryptography. From an SCA perspective, the results identify several vulnerabilities and flaws enabling protocol-level attacks on RSA, DSA, and ECDSA, in addition to full SCA of the SM2 cryptosystem. With respect to microarchitecture timing attacks, the dissertation presents a new side-channel vector due to port contention in the CPU execution units. And finally, on the applied cryptography front, OpenSSL now enjoys a revamped code base securing several cryptosystems against SCA, favoring a secure-by-default protection against side-channel attacks, instead of the insecure opt-in flagging mechanism provided by the fragile BN_FLG_CONSTTIME flag

    Cryptanalysis and Secure Implementation of Modern Cryptographic Algorithms

    Get PDF
    Cryptanalytic attacks can be divided into two classes: pure mathematical attacks and Side Channel Attacks (SCAs). Pure mathematical attacks are traditional cryptanalytic techniques that rely on known or chosen input-output pairs of the cryptographic function and exploit the inner structure of the cipher to reveal the secret key information. On the other hand, in SCAs, it is assumed that attackers have some access to the cryptographic device and can gain some information from its physical implementation. Cold-boot attack is a SCA which exploits the data remanence property of Random Access Memory (RAM) to retrieve its content which remains readable shortly after its power has been removed. Fault analysis is another example of SCAs in which the attacker is assumed to be able to induce faults in the cryptographic device and observe the faulty output. Then, by careful inspection of faulty outputs, the attacker recovers the secret information, such as secret inner state or secret key. Scan-based Design-For-Test (DFT) is a widely deployed technique for testing hardware chips. Scan-based SCAs exploit the information obtained by analyzing the scanned data in order to retrieve secret information from cryptographic hardware devices that are designed with this testability feature. In the first part of this work, we investigate the use of an off-the-shelf SAT solver, CryptoMinSat, to improve the key recovery of the Advance Encryption Standard (AES-128) key schedules from its corresponding decayed memory images which can be obtained using cold-boot attacks. We also present a fault analysis on both NTRUEncrypt and NTRUSign cryptosystems. For this specific original instantiation of the NTRU encryption system with parameters (N,p,q)(N,p,q), our attack succeeds with probability 11p\approx 1-\frac{1}{p} and when the number of faulted coefficients is upper bounded by tt, it requires O((pN)t)O((pN)^t) polynomial inversions in Z/pZ[x]/(xN1)\mathbb Z/p\mathbb Z[x]/(x^{N}-1). We also investigate several techniques to strengthen hardware implementations of NTRUEncrypt against this class of attacks. For NTRUSign with parameters (NN, q=plq=p^l, B\mathcal{B}, \emph{standard}, N\mathcal{N}), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault to succeed with probability 11p\approx 1-\frac{1}{p} and requires O((qN)t)O((qN)^t) steps when the number of faulted polynomial coefficients is upper bounded by tt. The attack is also applicable to NTRUSign utilizing the \emph{transpose} NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are also investigated. Furthermore, we present a scan-based SCA on NTRUEncrypt hardware implementations that employ scan-based DFT techniques. Our attack determines the scan chain structure of the polynomial multiplication circuits used in the decryption algorithm which allows the cryptanalyst to efficiently retrieve the secret key. Several key agreement schemes based on matrices were recently proposed. For example, \'{A}lvarez \emph{et al.} proposed a scheme in which the secret key is obtained by multiplying powers of block upper triangular matrices whose elements are defined over Zp\mathbb{Z}_p. Climent \emph{et al.} identified the elements of the endomorphisms ring End(Zp×Zp2)End(\mathbb{Z}_p \times \mathbb{Z}_{p^2}) with elements in a set, EpE_p, of matrices of size 2×22\times 2, whose elements in the first row belong to Zp\mathbb{Z}_{p} and the elements in the second row belong to Zp2\mathbb{Z}_{p^2}. Keith Salvin presented a key exchange protocol using matrices in the general linear group, GL(r,Zn)GL(r,\mathbb{Z}_n), where nn is the product of two distinct large primes. The system is fully specified in the US patent number 7346162 issued in 2008. In the second part of this work, we present mathematical cryptanalytic attacks against these three schemes and show that they can be easily broken for all practical choices of their security parameters

    Seamless Communication for Crises Management

    Get PDF
    SECRICOM is proposed as a collaborative research project aiming at development of a reference security platform for EU crisis management operations with two essential ambitions: (A) Solve or mitigate problems of contemporary crisis communication infrastructures (Tetra, GSM, Citizen Band, IP) such as poor interoperability of specialized communication means, vulnerability against tapping and misuse, lack of possibilities to recover from failures, inability to use alternative data carrier and high deployment and operational costs. (B) Add new smart functions to existing services which will make the communication more effective and helpful for users. Smart functions will be provided by distributed IT systems based on an agents’ infrastructure. Achieving these two project ambitions will allow creating a pervasive and trusted communication infrastructure fulfilling requirements of crisis management users and ready for immediate application

    Key establishment --- security models, protocols and usage

    Get PDF
    Key establishment is the process whereby two or more parties derive a shared secret, typically used for subsequent confidential communication. However, identifying the exact security requirements for key establishment protocols is a non-trivial task. This thesis compares, extends and merges existing security definitions and models for key establishment protocols. The primary focus is on two-party key agreement schemes in the public-key setting. On one hand new protocols are proposed and analyzed in the existing Canetti-Krawzcyk model. On the other hand the thesis develops a security model and novel definition that capture the essential security attributes of the standardized Unified Model key agreement protocol. These analyses lead to the development of a new security model and related definitions that combine and extend the Canetti-Krawzcyk pre- and post- specified peer models in terms of provided security assurances. The thesis also provides a complete analysis of a one-pass key establishment scheme. There are security goals that no one-pass key establishment scheme can achieve, and hence the two-pass security models and definitions need to be adapted for one-pass protocols. The analysis provided here includes the description of the required modification to the underlying security model. Finally, a complete security argument meeting these altered conditions is presented as evidence supporting the security of the one-pass scheme. Lastly, validation and reusing short lived key pairs are related to efficiency, which is a major objective in practice. The thesis considers the formal implication of omitting validation steps and reusing short lived key pairs. The conclusions reached support the generally accepted cryptographic conventions that incoming messages should not be blindly trusted and extra care should be taken when key pairs are reused
    corecore