1,250 research outputs found

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    Mobility Study for Named Data Networking in Wireless Access Networks

    Full text link
    Information centric networking (ICN) proposes to redesign the Internet by replacing its host-centric design with information-centric design. Communication among entities is established at the naming level, with the receiver side (referred to as the Consumer) acting as the driving force behind content delivery, by interacting with the network through Interest message transmissions. One of the proposed advantages for ICN is its support for mobility, by de-coupling applications from transport semantics. However, so far, little research has been conducted to understand the interaction between ICN and mobility of consuming and producing applications, in protocols purely based on information-centric principles, particularly in the case of NDN. In this paper, we present our findings on the mobility-based performance of Named Data Networking (NDN) in wireless access networks. Through simulations, we show that the current NDN architecture is not efficient in handling mobility and architectural enhancements needs to be done to fully support mobility of Consumers and Producers.Comment: to appear in IEEE ICC 201

    Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks

    Full text link
    Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks (HetNets). In this paper, we consider a cluster-centric SCN with combined design of cooperative caching and transmission policy. Small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity. We propose a combined caching scheme where part of the available cache space is reserved for caching the most popular content in every SBS, while the remaining is used for cooperatively caching different partitions of the less popular content in different SBSs, as a means to increase local content diversity. Depending on the availability and placement of the requested content, coordinated multipoint (CoMP) technique with either joint transmission (JT) or parallel transmission (PT) is used to deliver content to the served user. Using Poisson point process (PPP) for the SBS location distribution and a hexagonal grid model for the clusters, we provide analytical results on the successful content delivery probability of both transmission schemes for a user located at the cluster center. Our analysis shows an inherent tradeoff between transmission diversity and content diversity in our combined caching-transmission design. We also study optimal cache space assignment for two objective functions: maximization of the cache service performance and the energy efficiency. Simulation results show that the proposed scheme achieves performance gain by leveraging cache-level and signal-level cooperation and adapting to the network environment and user QoS requirements.Comment: 13 pages, 10 figures, submitted for possible journal publicatio

    A Learning-Based Approach to Caching in Heterogenous Small Cell Networks

    Full text link
    A heterogenous network with base stations (BSs), small base stations (SBSs) and users distributed according to independent Poisson point processes is considered. SBS nodes are assumed to possess high storage capacity and to form a distributed caching network. Popular files are stored in local caches of SBSs, so that a user can download the desired files from one of the SBSs in its vicinity. The offloading-loss is captured via a cost function that depends on the random caching strategy proposed here. The popularity profile of cached content is unknown and estimated using instantaneous demands from users within a specified time interval. An estimate of the cost function is obtained from which an optimal random caching strategy is devised. The training time to achieve an ϵ>0\epsilon>0 difference between the achieved and optimal costs is finite provided the user density is greater than a predefined threshold, and scales as N2N^2, where NN is the support of the popularity profile. A transfer learning-based approach to improve this estimate is proposed. The training time is reduced when the popularity profile is modeled using a parametric family of distributions; the delay is independent of NN and scales linearly with the dimension of the distribution parameter.Comment: 12 pages, 5 figures, published in IEEE Transactions on Communications, 2016. arXiv admin note: text overlap with arXiv:1504.0363
    corecore