10,685 research outputs found

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    Predicting and Recovering Link Failure Localization Using Competitive Swarm Optimization for DSR Protocol in MANET

    Get PDF
    Portable impromptu organization is a self-putting together, major construction-less, independent remote versatile hub that exists without even a trace of a determined base station or government association. MANET requires no extraordinary foundation as the organization is unique. Multicasting is an urgent issue in correspondence organizations. Multicast is one of the effective methods in MANET. In multicasting, information parcels from one hub are communicated to a bunch of recipient hubs all at once, at a similar time. In this research work, Failure Node Detection and Efficient Node Localization in a MANET situation are proposed. Localization in MANET is a main area that attracts significant research interest. Localization is a method to determine the nodes’ location in the communication network. A novel routing algorithm, which is used for Predicting and Recovering Link Failure Localization using a Genetic Algorithm with Competitive Swarm Optimization (PRLFL-GACSO) Algorithm is proposed in this study to calculate and recover link failure in MANET. The process of link failure detection is accomplished using mathematical modelling of the genetic algorithm and the routing is attained using the Competitive Swarm optimization technique. The result proposed MANET method makes use of the CSO algorithm, which facilitates a well-organized packet transfer from the source node to the destination node and enhances DSR routing performance. Based on node movement, link value, and endwise delay, the optimal route is found. The main benefit of the PRLFL-GACSO Algorithm is it achieves multiple optimal solutions over global information. Further, premature convergence is avoided using Competitive Swarm Optimization (CSO). The suggested work is measured based on the Ns simulator. The presentation metrix are PDR, endwise delay, power consumption, hit ratio, etc. The presentation of the proposed method is almost 4% and 5% greater than the present TEA-MDRP, RSTA-AOMDV, and RMQS-ua methods. After, the suggested method attains greater performance for detecting and recovering link failure. In future work, the hybrid multiway routing protocols are presented to provide link failure and route breakages and liability tolerance at the time of node failure, and it also increases the worth of service aspects, respectively
    corecore