4,741 research outputs found

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Feedback Allocation For OFDMA Systems With Slow Frequency-domain Scheduling

    Get PDF
    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.Comment: Accepted to IEEE Transactions on Signal Processin

    Deep Learning for Frame Error Probability Prediction in BICM-OFDM Systems

    Full text link
    In the context of wireless communications, we propose a deep learning approach to learn the mapping from the instantaneous state of a frequency selective fading channel to the corresponding frame error probability (FEP) for an arbitrary set of transmission parameters. We propose an abstract model of a bit interleaved coded modulation (BICM) orthogonal frequency division multiplexing (OFDM) link chain and show that the maximum likelihood (ML) estimator of the model parameters estimates the true FEP distribution. Further, we exploit deep neural networks as a general purpose tool to implement our model and propose a training scheme for which, even while training with the binary frame error events (i.e., ACKs / NACKs), the network outputs converge to the FEP conditioned on the input channel state. We provide simulation results that demonstrate gains in the FEP prediction accuracy with our approach as compared to the traditional effective exponential SIR metric (EESM) approach for a range of channel code rates, and show that these gains can be exploited to increase the link throughput.Comment: Submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processin
    • …
    corecore