621 research outputs found

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Classified Medium Access Control Algorithm (CL-MAC) for Enhanced Operation of IEEE 802.11ah

    Get PDF
    We present in this apaper a high level framework of a proposed Medium Access Control Algorithm known as Classified Medium Access Control Algorithm for enhanced operation of IEEE 802.11ah.  IEEE 802.11ah is an amendment for the IEEE 802.11 standard known as Wireless Local Area Network (WLAN) or Wi-Fi network standard. This amendment was mainly established to increase the number of Wi-Fi stations managed by the single Access Point. As more and more number of heterogeneous network stations emerge to also utilize this network, some techniques have been employed to ensure better management of the network but this still remains an open issue that needs to be tackled. This paper presents a hybrid TDMA and CSMA/CA scheme for the channel access in lieu of the default Enhanced Distributed Channel Access (EDCA) of the WLAN. When compared with the result of the EDCA, the proposed scheme provided a better throughput performance for the IEEE 802.11ah amendment

    Protocol for Extreme Low Latency M2M Communication Networks

    Get PDF
    As technology evolves, more Machine to Machine (M2M) deployments and mission critical services are expected to grow massively, generating new and diverse forms of data traffic, posing unprecedented challenges in requirements such as delay, reliability, energy consumption and scalability. This new paradigm vindicates a new set of stringent requirements that the current mobile networks do not support. A new generation of mobile networks is needed to attend to this innovative services and requirements - the The fifth generation of mobile networks (5G) networks. Specifically, achieving ultra-reliable low latency communication for machine to machine networks represents a major challenge, that requires a new approach to the design of the Physical (PHY) and Medium Access Control (MAC) layer to provide these novel services and handle the new heterogeneous environment in 5G. The current LTE Advanced (LTE-A) radio access network orthogonality and synchronization requirements are obstacles for this new 5G architecture, since devices in M2M generate bursty and sporadic traffic, and therefore should not be obliged to follow the synchronization of the LTE-A PHY layer. A non-orthogonal access scheme is required, that enables asynchronous access and that does not degrade the spectrum. This dissertation addresses the requirements of URLLC M2M traffic at the MAC layer. It proposes an extension of the M2M H-NDMA protocol for a multi base station scenario and a power control scheme to adapt the protocol to the requirements of URLLC. The system and power control schemes performance and the introduction of more base stations are analyzed in a system level simulator developed in MATLAB, which implements the MAC protocol and applies the power control algorithm. Results showed that with the increase in the number of base stations, delay can be significantly reduced and the protocol supports more devices without compromising delay or reliability bounds for Ultra-Reliable and Low Latency Communication (URLLC), while also increasing the throughput. The extension of the protocol will enable the study of different power control algorithms for more complex scenarios and access schemes that combine asynchronous and synchronous access

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Novel Approach using Robust Routing Protocol in Underwater Acoustic Wireless Sensor Network with Network Simulator 2: A Review

    Get PDF
    In recent year wireless sensor network has been an emerging technology and promising technology in unveiling the riddle of the marine life and other underwater applications. As it is a permutation of computation, sensing and communication. In the 70% of the earth a huge amount of unexploited resources lies covered by oceans. To coordinate interact and share information among themselves to carry out sensing and monitoring function underwater sensor network consists number of various sensors and autonomous underwater vehicles deployed underwater. The two most fundamental problems in underwater sensor network are sensing coverage and network connectivity. The coverage problem reflects how well a sensor network is tracked or monitored by sensors. An underwater wireless sensor networks is the emerging field that is having the challenges in each field such as the deployment of nodes, routing, floating movement of sensors etc. This paper is concerned about the underwater acoustic wireless sensor network of routing protocol applications and UW-ASNs deployments for monitoring and control of underwater domains

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Enhancements and Challenges in IEEE 802.11ah - A Sub-Gigahertz Wi-Fi for IoT Applications

    Get PDF
    Internet of Things is a concept which brings ubiquitous connectivity to objects that we interact with in the course of our daily activities. With the projected estimates of the number of wireless connected devices reaching massive numbers, it is expected to revolutionize our daily lives significantly. This sort of augmented connectivity will enable new applications in a myriad of domains including smart cities, smart houses, healthcare monitoring, industrial automation and smart metering. These applications entail efficient operation of wireless networks with a large number of energy constrained devices. However, the existing infrastructure for wireless connectivity is not designed to handle such volume of projected growth. Addressing this requirement, the IEEE 802.11ah task group is working on a new amendment of the IEEE 802.11 standard, suitable for high density WLAN networks in the sub 1 GHz band. It is expected to be the prevalent standard in many Internet of Things (IoT) and Machine to Machine (M2M) applications where it will support long-range and energy-efficient communication in dense network environments. Therefore, significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios. In this thesis we evaluate the performance of many of the new features that have been introduced in the new standard including the Restricted Access Window, Sectorization and Subchannel Selective Transmission mechanisms by means of analytical and simulated models. We propose novel Medium Access Control (MAC) layer algorithms which are shown to have improved the throughput and energy efficiency performance in IEEE 802.11ah networks. We consider practical deployment scenarios in our simulations and evaluate the effects of challenges such as dense networks, interference from neighboring cells and duty cycle limitations on the performance metrics. Overall, we find that the advanced new features make 802.11ah standard a true IoT-enabling technology towards seamless integration of massive amount of connected devices in the future. Our research effort supports the notion that IEEE 802.11ah will be a key technology for future IoT and M2M applications especially in long-range and energy efficient deployments
    • …
    corecore