24,667 research outputs found

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    OSCAR: A Collaborative Bandwidth Aggregation System

    Full text link
    The exponential increase in mobile data demand, coupled with growing user expectation to be connected in all places at all times, have introduced novel challenges for researchers to address. Fortunately, the wide spread deployment of various network technologies and the increased adoption of multi-interface enabled devices have enabled researchers to develop solutions for those challenges. Such solutions aim to exploit available interfaces on such devices in both solitary and collaborative forms. These solutions, however, have faced a steep deployment barrier. In this paper, we present OSCAR, a multi-objective, incentive-based, collaborative, and deployable bandwidth aggregation system. We present the OSCAR architecture that does not introduce any intermediate hardware nor require changes to current applications or legacy servers. The OSCAR architecture is designed to automatically estimate the system's context, dynamically schedule various connections and/or packets to different interfaces, be backwards compatible with the current Internet architecture, and provide the user with incentives for collaboration. We also formulate the OSCAR scheduler as a multi-objective, multi-modal scheduler that maximizes system throughput while minimizing energy consumption or financial cost. We evaluate OSCAR via implementation on Linux, as well as via simulation, and compare our results to the current optimal achievable throughput, cost, and energy consumption. Our evaluation shows that, in the throughput maximization mode, we provide up to 150% enhancement in throughput compared to current operating systems, without any changes to legacy servers. Moreover, this performance gain further increases with the availability of connection resume-supporting, or OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput

    Power-optimised multi-radio network under varying throughput constraints for rural broadband access

    Get PDF
    The use of complementary radio access technologies within a network allows the advantages of each technology to be combined to overcome individual limitations. In this paper we show how 5~GHz and ``TV White Space'' overlay networks can be combined to provide fixed wireless access coverage within a rural environment. By creating a model of the whole network we derive the optimum assignment of stations between the two overlay networks to maximise the capacity of individual stations given a desired individual station data rate. Through simulation we show how the power consumption of a base station can be minimised by dynamically adjusting station assignments based on network data rate requirements changing over the course of a day

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • 

    corecore