276 research outputs found

    Analisis Performansi Transmission Control Protocol (TCP) Yang Disebabkan Oleh Wideband Effect Loss Pada Jaringan UMTS

    Get PDF
    Universal Mobile Telecommunications System (UMTS) is the forthcoming global mobile network for packet data. This network uses the Wideband Code Division MultIPle Access (WCDMA) air interface. Contrary to other Radio Networks like GPRS, most of UMTS applications will be end-to-end applications and as a result the Transmission Control Protocol (TCP) will be used. In a wireless environment that used radio channel, mobile users can make the performance of system decrease. The influence of multIPath (Rayleigh fading) was calculated by MatLab software. The result from MatLab trace used in NS-2 environment to looking for the performance of UMTS system that used HSDSCH channel. The result of simulation have done, the performance of UMTS system HSDSCH channel that influence with radius user from node B, the number of user in cell, the moving of users, shadowing, multIPath, and Rayleigh fading. The best performance result was received if the radius of users is near from node B (±300m), moreless if radius users from node B is far, so the performance will be decrease

    Simulasi Pengaruh Shadowing dan Rayleigh Fading terhadap Performansi TCP Reno pada Jaringan UMTS

    Get PDF
    Intisari---Universal Mobile Telecommunication System (UMTS) merupakan perkembangan global teknologi mobile network untuk packet data. Sistem UMTS ini menggunakan Wideband Code Division Multiple Access (WCDMA) sebagai air-interfacenya. Seperti komunikasi radio network lainnya, misalnya GPRS, maka sebagian besar aplikasi dari UMTS bersifat end-to-end application yang menggunakan Transmission Control Protocol (TCP). Pada jaringan yang menggunakan kanal radio, perubahan kondisi kanal, pergerakan user dapat mempengaruhi kinerja sistem. Pengaruh shadowing, multipath (Rayleigh fading) inilah yang disebut sebagai wideband effect loss. Wideband effect loss ini dihitung menggunakan software MatLab. Hasil dari file trace perhitungan pengaruh wideband effect loss ini kemudian dijadikan input pada NS-2 Simulator untuk dihitung performansi jaringan UMTS yang menggunakan HSDSCH. Hasil dari uji kinerja sistem UMTS yang dipengaruhi oleh wideband effect loss sangat dipengaruhi oleh jarak user terhadap node B, jumlah user pada cell, kecepatan pergerakan user, shadowing, multipath, dan Rayleigh fading. Performansi sistem UMTS yang paling baik diperoleh bila jarak user terhadap node B dekat (±300m) sedangkan semakin jauh jarak user terhadap node B maka performansi sistem akan semakin menurun. Kata Kunci---TCP, multipath, wideband effect loss, throughput, HSDSCH, UMTS.   Abstract---Universal Mobile Telecommunications System (UMTS) is the forthcoming global mobile network for packet data. This network uses the Wideband Code Division Multiple Access (WCDMA) air interface. Contrary to other Radio Networks like GPRS, most of UMTS applications will be end-to-end applications and as a result the Transmission Control Protocol (TCP) will be used. In a wireless environment that used radio channel,  mobile users can make the performance of system decrease. The influence of multipath (Rayleigh fading) was calculated by MatLab software. The result from MatLab trace used in NS-2 environment to looking for the performance of UMTS system that used HSDSCH channel. The result of simulation have done, the performance of UMTS system HSDSCH channel that influence with radius user from node B, the number of user in cell, the moving of users, shadowing, multipath, and Rayleigh fading. The best performance result was received if the radius of users is near from node B (±300m), moreless if radius users from node B is far, so the performance will be decrease. Keywords---TCP, multipath, wideband effect loss, throughput, HSDSCH, UMT

    Performance Analysis of 3G Communication Network

    Get PDF
    In this project, third generation (3G) technologies research had been carried out to design and optimization conditions for 3G network. The 3G wireless mobile communication networks are growing at an ever faster rate, and this is likely to continue in the foreseeable future. Some services such as e-mail, web browsing etc allow the transition of the network from circuit switched to packet switched operation, resulting in increased overall network performance. Higher reliability, better coverage and services, higher capacity, mobility management, and wireless multimedia are all parts of the network performance. Throughput and spectral efficiency are fundamental parameters in capacity planning for 3G cellular network deployments. This project investigates also the downlink (DL) and uplink (UL) throughput and spectral efficiency performance of the standard Universal Mobile Telecommunications system (UMTS) system for different scenarios of user and different technologies. Power consumption comparison for different mobile technology is also discussed. The analysis can significantly help system engineers to obtain crucial performance characteristics of 3G network. At the end of the paper, coverage area of 3G from one of the mobile network in Malaysia is presented

    STUDI INTEGRASI JARINGAN MULTIMEDIA B-ISDN/ATM DENGAN UMTS (Universal Mobile Telecommunication System)

    Get PDF
    Perkembangan implementasi dari komunikasi multimedia mengarah pada struktur jaringan kabel yang sudah ada, namun tidak memungkinkan untuk dapat dipakai di sembarang tempat karena ketiadaan perangkat yang portable. UMTS sebagai sistem telekomunikasi generasi ketiga dipersiapkan untuk dapat mendukung komunikasi data dan multimedia serta dapat mendukung bermacam-macam layanan yang ditawarkan oleh jaringan tetap yang ada saat ini termasuk dengan jaringan B-ISDN. UMTS mempertimbangkan layanan laju data radio sebesar 144 Kbps sampai 2 Mbps untuk mendukung berbagai macam layanan data multimedia dimana jenis dari akses radio tersebut akan menjangkau dari sambungan dengan laju bit yang konstan maupun yang variabel, akses paket yang berorientasi koneksi sampai akses paket yang tak terkoneksi pada band frekuensi 2 GHz. Integrasi yang dilakukan menggunakan fasilitas infrastruktur jaringan yang sudah ada yang berbasiskan pada ATM transport dan integrasi dengan konsep IN serta mendukung pemakaian antarmuka radio serta mengadopsi IP (Internet Protocol) switching dan aplikasi protokol yang dapat digunakan untuk interaksi antara entitas yang menyilang dari antarmuka yang digunakan untuk aplikasi protokol manajemen UMTS adalah bebas, antara lain SNMP, CNIP dan CORBA. Dengan mobilitas, laju bit dan band frekuensi yang besar serta fleksibilitas yang dipunyai UMTS maka proses integrasi dengan jaringan multimedia B-ISDN/ATM dapat dimungkinkan dengan kualitas layanan yang identik dengan jaringan yang sudah ada

    Self-optimizing Uplink Outer Loop Power Control for WCDMA Network

    Get PDF
    The increasing demands for high data rates, drives the efforts for more efficient usage of the finite natural radio spectrum resources. Existing wideband code division multiple access (WCDMA) uplink outer loop power control has difficulty to answer to the new load on air interface. The main reason is that the maximum allowed noise rise per single user is fixed value. In worst case uplink load can be so high that all services, including conversational service, could be blocked. In this paper investigation has been performed to present correlation of main system parameters, used by uplink outer loop power control, to uplink load. Simulation has been created and executed to present difference in current implementation of uplink outer loop power control against proposed changes. Proposed solution is self-optimizing uplink outer loop power control in a way that maximum allowed noise rise per single user would be dynamically changed based on current uplink load on cell

    Wireless communications in the new millennium and third generation wireless networks

    Get PDF
    At the end of the 20 century, and at the beginning of this one, wireless communications are making large advances. The new technologies are on the way to provide a high-speed, high-quality information exchange between handheld terminals, and information repositories. The so called 2,5 generation networks, using the techniques like the HSCSD1, GPRS2, EDGE3, and the 3r generation wireless systems will help the wireless world to reach those goals. In this thesis I will start from the first and second-generation wireless networks, and then look into the 2,5 generation and 3rd generation wireless communications more in detail. The latest advances in the wireless world are the main focus of this paper although a short history of wireless communications is also given. The various aspects related to 3rd generation systems will be explored in this thesis, for example the air interface discussions, its time scale, its elements like the mobile equipment, software and security, USLM4, services that will be offered, etc. In addition, the technical factors and key technologies that are likely to shape the wireless network environment of the future will be explored. This part is expected to help us to see beyond the 3rd generation

    Design and implementation of a traffic control framework in Firefox OS

    Get PDF
    Today's smartphones include a rich feature-set as well as various wireless interfaces that provide extra services rather than just voice communication or messaging, as it occurred with traditional mobile phones. Additionally, the widespread use of mobile devices using Third Generation (3G) and Long Term Evolution (LTE) networks has led to the development of various applications (apps) that take advantage of the always-on Internet connectivity provided by these networks (e.g. instant messaging and social network services). Unlike traditional Internet apps (e.g. web surfing and file transfer), the emerging apps that rely on always-on connectivity are often constantly running in the background to receive messages and status updates. This behavior causes that apps continuously generate short app signaling messages such as keep-alive and ping requests to maintain the always-on connectivity. Although the traffic volume of keep-alive messages is not large, frequent short messages can incur a large amount of related signaling traffic in the mobile network. In 3G or LTE networks, the User Equipment (UE) and the Radio Access Network (RAN) keep the Radio Resource Control (RRC) states. The UE stays in Connected mode when it transmits or receives data during active periods and stays in Idle mode during inactive periods. To send even a small data packet, the UE changes the state to the Connected mode prior to transmission. This radio state change generates a lot of network signaling messages, resulting in a rapid increase in traffic loading. Large amounts of network signaling traffic leads to two major problems: rapid drainage of the mobile device's battery and a signaling traffic surge in the mobile network. Since the air interface is a spare resource and the traffic for mobile end devices will grow enormously, it is important that the wireless resources are used in the most efficient way. However, this is not true for current networks as there is not alignment between devices, apps and the network.This document proposes a traffic control framework which acts as an interface between the apps and the network and allows the network operator to aggregate packets prior to transmission. The aggregated packets are sent out at once after a configurable amount of time which means for instance that resources on the wireless link have to be reserved only once for a number of app signaling packets and not for each packet separately. By this the packet transmission will be bursty which will improve network efficiency as the amount of signaling messages is minimized. In addition, battery runtime is improved as lower signaling overhead will reduce the activity time and energy consumption within devices.Hoy en día los smartphones incorporan un amplio conjunto de utilidades, así como varias interfaces inalámbricas que proporcionan servicios adicionales a los ofrecidos por los teléfonos móviles convencionales. Por otra parte, el uso generalizado de las redes 3G y LTE ha originado el desarrollo de numerosas aplicaciones que aprovechan las ventajas que ofrecen dichas redes, un ejemplo son las aplicaciones de redes sociales. Estas aplicaciones, a diferencia de otras como la navegación web o la descarga de archivos, están constantemente ejecutándose en segundo plano y recibiendo notificaciones de actualización de estado. Este comportamiento propicia el intercambio de pequeños mensajes de señalización para mantener la conexión, tales como mensajes "keep alive" o "ping requests". A pesar de que el volumen de estos mensajes no es elevado, su constante intercambio puede ocasionar una gran cantidad de tráfico de señalización en la red. En las redes 3G o LTE, el equipo de usuario (UE) y la red de acceso radio terrestre (RAN) mantienen los estados RRC. El equipo de usuario permanece en el estado activo cuando transmite o recibe datos y retorna al estado de reposo durante los periodos inactivos. El envío de un pequeño paquete de datos supone la transición desde el estado de reposo al estado activo. Este comportamiento genera muchos mensajes de señalización e implica un rápido incremento en el tráfico de la red. Este incremento del tráfico de señalización ocasiona dos grandes problemas: la sobrecarga de la red y un impacto negativo en el consumo de batería de los dispositivos móviles. Es de vital importancia que se haga un uso eficiente de los recursos de red, ya que el aire, en este caso el canal de comunicación, es un medio compartido. Además, se espera que el tráfico generado por los dispositivos móviles crezca enormemente en los próximos años. Las redes móviles actuales no son utilizadas de un modo eficiente debido a la falta de interacción entre la red, los dispositivos móviles y las aplicaciones. Este documento presenta una plataforma de control de tr a co que actúa como interfaz entre las aplicaciones y la red, permitiendo al operador de red agregar los paquetes antes de su transmisión. Esto permite, por ejemplo, que los recursos de red sean reservados s olo una vez para la ráfaga de paquetes y no para cada paquete individualmente, lo cual minimiza la cantidad de mensajes de señalización. Esta propuesta no sólo ayuda a mejorar la eficiencia de la red, sino que además optimiza el uso de la batería, ya que una disminución del tráfico de señalización provoca una reducción del tiempo de actividad y consumo de energía de los dispositivos móviles.Ingeniería Telemátic
    corecore