8 research outputs found

    Contributions to the routing of traffic flows in multi-hop IEEE 802.11 wireless networks

    Get PDF
    The IEEE 802.11 standard was not initially designed to provide multi-hop capabilities. Therefore, providing a proper traffic performance in Multi-Hop IEEE 802.11 Wireless Networks (MIWNs) becomes a significant challenge. The approach followed in this thesis has been focused on the routing layer in order to obtain applicable solutions not dependent on a specific hardware or driver. Nevertheless, as is the case of most of the research on this field, a cross-layer design has been adopted. Therefore, one of the first tasks of this work was devoted to the study of the phenomena which affect the performance of the flows in MIWNs. Different estimation methodologies and models are presented and analyzed. The first main contribution of this thesis is related to route creation procedures. First, FB-AODV is introduced, which creates routes and forwards packets according to the flows on the contrary to basic AODV which is destination-based. This enhancement permits to balance the load through the network and gives a finer granularity in the control and monitoring of the flows. Results showed that it clearly benefits the performance of the flows. Secondly, a novel routing metric called Weighted Contention and Interference routing Metric (WCIM) is presented. In all analyzed scenarios, WCIM outperformed the other analyzed state-of-the-art routing metrics due to a proper leveraging of the number of hops, the link quality and the suffered contention and interference. The second main contribution of this thesis is focused on route maintenance. Generally, route recovery procedures are devoted to the detection of link breaks due to mobility or fading. However, other phenomena like the arrival of new flows can degrade the performance of active flows. DEMON, which is designed as an enhancement of FB-AODV, allows the preemptive recovery of degraded routes by passively monitoring the performance of active flows. Results showed that DEMON obtains similar or better results than other published solutions in mobile scenarios, while it clearly outperforms the performance of default AODV under congestion Finally, the last chapter of this thesis deals with channel assignment in multi-radio solutions. The main challenge of this research area relies on the circular relationship between channel assignment and routing; channel assignment determines the routes that can be created, while the created routes decide the real channel diversity of the network and the level of interference between the links. Therefore, proposals which join routing and channel assignment are generally complex, centralized and based on traffic patterns, limiting their practical implementation. On the contrary, the mechanisms presented in this thesis are distributed and readily applicable. First, the Interference-based Dynamic Channel Assignment (IDCA) algorithm is introduced. IDCA is a distributed and dynamic channel assignment based on the interference caused by active flows which uses a common channel in order to assure connectivity. In general, IDCA leads to an interesting trade-off between connectivity preservation and channel diversity. Secondly, MR-DEMON is introduced as way of joining channel assignment and route maintenance. As DEMON, MR-DEMON monitors the performance of the active flows traversing the links, but, instead of alerting the source when noticing degradation, it permits reallocating the flows to less interfered channels. Joining route recovery instead of route creation simplifies its application, since traffic patterns are not needed and channel reassignments can be locally decided. The evaluation of MR-DEMON proved that it clearly benefits the performance of IDCA. Also, it improves DEMON functionality by decreasing the number of route recoveries from the source, leading to a lower overhead.El estándar IEEE 802.11 no fue diseñado inicialmente para soportar capacidades multi-salto. Debido a ello, proveer unas prestaciones adecuadas a los flujos de tráfico que atraviesan redes inalámbricas multi-salto IEEE 802.11 supone un reto significativo. La investigación desarrollada en esta tesis se ha centrado en la capa de encaminamiento con el objetivo de obtener soluciones aplicables y no dependientes de un hardware específico. Sin embargo, debido al gran impacto de fenómenos y parámetros relacionados con las capas físicas y de acceso al medio sobre las prestaciones de los tráficos de datos, se han adoptado soluciones de tipo cross-layer. Es por ello que las primeras tareas de la investigación, presentadas en los capítulos iniciales, se dedicaron al estudio y caracterización de estos fenómenos. La primera contribución principal de esta tesis se centra en mecanismos relacionados con la creación de las rutas. Primero, se introduce una mejora del protocolo AODV, que permite crear rutas y encaminar paquetes en base a los flujos de datos, en lugar de en base a los destinos como se da en el caso básico. Esto permite balacear la carga de la red y otorga un mayor control sobre los flujos activos y sus prestaciones, mejorando el rendimiento general de la red. Seguidamente, se presenta una métrica de encaminamiento sensible a la interferencia de la red y la calidad de los enlaces. Los resultados analizados, basados en la simulación de diferentes escenarios, demuestran que mejora significativamente las prestaciones de otras métricas del estado del arte. La segunda contribución está relacionada con el mantenimiento de las rutas activas. Generalmente, los mecanismos de mantenimiento se centran principalmente en la detección de enlaces rotos debido a la movilidad de los nodos o a la propagación inalámbrica. Sin embargo, otros fenómenos como la interferencia y congestión provocada por la llegada de nuevos flujos pueden degradar de forma significativa las prestaciones de los tráficos activos. En base a ello, se diseña un mecanismo de mantenimiento preventivo de rutas, que monitoriza las prestaciones de los flujos activos y permite su reencaminamiento en caso de detectar rutas degradadas. La evaluación de esta solución muestra una mejora significativa sobre el mantenimiento de rutas básico en escenarios congestionados, mientras que en escenarios con nodos móviles obtiene resultados similares o puntualmente mejores que otros mecanismos preventivos diseñados específicamente para casos con movilidad. Finalmente, el último capítulo de la tesis se centra en la asignación de canales en entornos multi-canal y multi-radio con el objetivo de minimizar la interferencia entre flujos activos. El reto principal en este campo es la dependencia circular que se da entre la asignación de canales y la creación de rutas: la asignación de canales determina los enlaces existentes la red y por ello las rutas que se podrán crear, pero son finalmente las rutas y los tráficos activos quienes determinan el nivel real de interferencia que se dará en la red. Es por ello que las soluciones que proponen unificar la asignación de canales y el encaminamiento de tráficos son generalmente complejas, centralizadas y basadas en patrones de tráfico, lo que limita su implementación en entornos reales. En cambio, en nuestro caso adoptamos una solución distribuida y con mayor aplicabilidad. Primero, se define un algoritmo de selección de canales dinámico basado en la interferencia de los flujos activos, que utiliza un canal común en todos los nodos para asegurar la conectividad de la red. A continuación, se introduce un mecanismo que unifica la asignación de canales con el mantenimiento preventivo de las rutas, permitiendo reasignar flujos degradados a otros canales disponibles en lugar de reencaminarlos completamente. Ambas soluciones demuestran ser beneficiosas en este tipo de entornos.Postprint (published version

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    A simulation environment for software defined wireless networks with legacy devices

    Get PDF
    The adoption of Software Defined Networks (SDNs) in a Mobile ad-hoc network (MANET) could present several benefits, such as adaptability and performance increase. However, to assess this possibility, a simulation tool may be necessary to test new protocols and solutions in a large combination of scenarios and traffic patterns, without the need of real equipment. Unfortunately, few tools are available for wireless SDNs, and none have the ability to also support MANETs with multiple radio access technologies. While NS-3 has the ability to simulate heterogeneous MANETs, it does not support wireless OpenFlow capable devices or wireless OpenFlow channels. In this work we present a simulation environment that, besides creating an ad-hoc data plane, enables the possibility of creating wireless hybrid SDN devices capable of connecting to legacy devices, alongside with an LTE OpenFlow channel connected to an external SDN Controller (RYU). Results show that the simulation environment supports large networks with both legacy and SDN devices, although these will bear an effective running time higher than their simulation time. Moreover, when comparing to an OLSR-only network, the proposed network (with a basic path search metric) has the same or higher performance.info:eu-repo/semantics/publishedVersio

    Wireless network architecture for future smart grid machine to machine communications

    Get PDF
    Transformation of the conventional power grid into an efficient power delivery network is an important advance that will benefit consumers, business and the environment by providing improved integration of renewable energy, including solar and wind. A reliable, low latency communication system is a fundamental requirement for smart power grids. To achieve bidirectional energy distribution capability and to support diverse Smart Grid (SG) applications, the modern SG requires the capacity to handle the traffic generated by machine to machine (M2M) communication infrastructure. Successful integration of numerous SG applications, renewable energy sources and Electric Vehicles (EVs) into a conventional power grid would not be possible without a communication network that has been designed to support the needs of the new and innovative renewable power generation, distribution and storage technologies. While the legacy communication infrastructure, utilized to support the existing power network, fails to support all of the SG functionalities, Software Defined Networking (SDN), based on wireless communication systems, has the potential to provide an effective solution. SDN offers a range of features that fulfill the unique requirements of the SG applications. Being a new networking paradigm, SDN remains to be implemented for SG M2M communication scenarios and there remain a number of challenges that need to be overcome. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. The aim of this research was to carry out an in-depth study on the future SG communication networks and to propose solutions to identified limitations of existing communication networks. Keeping this intention in mind, the study first focuses on the SG application modeling techniques based on the traffic requirements and power supply load profiles. To address the dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. SG application models were developed and evaluated using a range of scenarios reflecting typical usage. Heterogenous network architectures and efficient traffic models were developed to identify an appropriate wireless communication technology and to maximize the network performance for major SG applications. However, a careful observation of the communication networks ability to manage and control the diverse M2M communications reveals that the inadequate dynamic communication network configuration capability would be a problem for future SG applications. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. To realize the full potential of the SGs and deployment scenarios it is essential to analyze the major applications and key requirements to develop those applications. Also, it might be necessary to select an appropriate communication technology for each of the power system domains. The study first focuses on the SG application modeling techniques based on the traffic requirement and load supply profiles of the power system. To address dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. The developed SG application models were further evaluated using simulation scenarios and a test bed model. The challenge of selecting an appropriate wireless communication technology and maximizing network performance for major SG applications was handled by developing multiple heterogenous network architectures and efficient traffic models. A comprehensive literature review of the state of the art of SG applications and standards was carried out to develop robust network models utilizing diverse communication technologies. The literature survey immensely helped to develop two novel SG application models, Zigbee based Pilot protection scheme for a smart distribution grid and Vehicle to Grid (V2G) smart load management scheme. Application modelling included detail traffic modelling, developing smart algorithms, analytical models, user load profile analysis, simulation models and test bed setups. Furthermore, a novel WiMax Ranging scheme is presented to improve the random-access mechanism for various periodic M2M applications supported by extensive simulation based performance analysis. Future SGs will be overwhelmed by an excessive number of sensor devices that collect various data related to the power system. In a SG Neighborhood Area Network (NAN), wireless sensor networks (WSNs) will play a key role in the development of major SG applications. The application centric WSNs require complex configurations such as well-defined access techniques, transmission and security protocols. Challenges also include development of appropriate routing protocols to tackle resource limitations and delay caused by decentralized WSNs and ad hoc based packet forwarding techniques. A careful observation of manageability and controllability of the diverse M2M network reveals that the inadequate dynamic network configuration capability of the existing SG communication network would be a key bottleneck for future SG. Thus, a novel WSN based communication framework is presented exploiting the emerging SDN networking paradigm. SDN would be beneficial for SGs in many ways. By decoupling the control plane and data forwarding plane, SDN facilitates real-time control and integration of network services and applications that can reach down into the network through the controller hierarchy. A higher degree of control over the overall SG communication network would be achievable via the dynamic programmability provided by SDN. The SDN based WSN network must be robust enough to support the adaptive energy dispatching capacity of the modern power system. The proposed communication framework incorporates novel communication features to separate the control plane and data forwarding plane within the SG communication network. This includes detailed modeling of the control and data plane communication parameters to support both delay sensitive and delay tolerant SG applications. The unique SDN features offers a platform to accommodate maximum number of SG applications with highest controllability and manageability. The performance of the SDN based future SG network is evaluated using a simulation scenario that considers realistic user load profiles, wireless standards, the SG premises geographical area and the state of the art of the SG standards. Although the control plane enables a global view of the data plane and provides a centralized platform to control and deploy new services, physically a single controller in the controller would not be practical for SG networks. The challenges arise in terms of scalability, security and reliability, particularly in a SG environment. To increase the efficiency of the proposed SDN based WSNs for the SG NAN, the study proposed distributed controllers with a comprehensive analytical model that optimizes the number of distributed controllers to enhance performance of the proposed communication framework in the NAN domain. The proposed framework along with the analytical model derive several solutions, such as the minimum number of controllers to support the switches and M2M devices, accommodate SG applications and a differentiated flow processing technique to support all traffic types within the network. Lastly, the study focuses on developing SDN-based application specific traffic models for the smart distribution grid. The thesis focuses on three major issues while developing a future SG communication system. Firstly, its identifies major applications and their traffic requirements at different domains of the SG. Appropriate traffic models were developed by designing robust wireless communication network models. Also, application centric smart optimization techniques are adopted to achieve maximum performance and presented with simulation results, statistical analysis and a test bed result analysis. Secondly, to facilitate the centralized controllability and programmability for supporting diverse SG applications within the SG, a novel WSNs communication framework is presented exploiting the next generation SDN paradigm. Both delay sensitive and delay tolerant SG applications were considered based on the traffic requirement to develop the SDN based WSN communication framework in the SG NAN. Smart algorithms were developed at the SDN based WSN application layer to accommodate a large number of SG applications. The framework feasibility is demonstrated by the simulations carried out to verify the model and provide a statistical analysis. Thirdly, the thesis focuses on developing a novel analytical model that can be used to determine the optimal number of distributed controllers and switches in a SG NAN domain. The proposed application centric traffic modelling techniques, SDN based wireless communication framework and analytical models in this thesis can be adapted for research into other communication networks, particularly those that are begin developed for the Internet of Things and other forms of M2M communications. Also, due to the technology agonistic characteristics of the analytical and traffic models, they can be used in the development of various wireless networks, particularly those that focus on wireless sensor networks, more generally than the broader Internet of Things

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Self-organized backpressure routing for the wireless mesh backhaul of small cells

    Get PDF
    The ever increasing demand for wireless data services has given a starring role to dense small cell (SC) deployments for mobile networks, as increasing frequency re-use by reducing cell size has historically been the most effective and simple way to increase capacity. Such densification entails challenges at the Transport Network Layer (TNL), which carries packets throughout the network, since hard-wired deployments of small cells prove to be cost-unfeasible and inflexible in some scenarios. The goal of this thesis is, precisely, to provide cost-effective and dynamic solutions for the TNL that drastically improve the performance of dense and semi-planned SC deployments. One approach to decrease costs and augment the dynamicity at the TNL is the creation of a wireless mesh backhaul amongst SCs to carry control and data plane traffic towards/from the core network. Unfortunately, these lowcost SC deployments preclude the use of current TNL routing approaches such as Multiprotocol Label Switching Traffic Profile (MPLS-TP), which was originally designed for hard-wired SC deployments. In particular, one of the main problems is that these schemes are unable to provide an even network resource consumption, which in wireless environments can lead to a substantial degradation of key network performance metrics for Mobile Network Operators. The equivalent of distributing load across resources in SC deployments is making better use of available paths, and so exploiting the capacity offered by the wireless mesh backhaul formed amongst SCs. To tackle such uneven consumption of network resources, this thesis presents the design, implementation, and extensive evaluation of a self-organized backpressure routing protocol explicitly designed for the wireless mesh backhaul formed amongst the wireless links of SCs. Whilst backpressure routing in theory promises throughput optimality, its implementation complexity introduces several concerns, such as scalability, large end-to-end latencies, and centralization of all the network state. To address these issues, we present a throughput suboptimal yet scalable, decentralized, low-overhead, and low-complexity backpressure routing scheme. More specifically, the contributions in this thesis can be summarized as follows: We formulate the routing problem for the wireless mesh backhaul from a stochastic network optimization perspective, and solve the network optimization problem using the Lyapunov-driftplus-penalty method. The Lyapunov drift refers to the difference of queue backlogs in the network between different time instants, whereas the penalty refers to the routing cost incurred by some network utility parameter to optimize. In our case, this parameter is based on minimizing the length of the path taken by packets to reach their intended destination. Rather than building routing tables, we leverage geolocation information as a key component to complement the minimization of the Lyapunov drift in a decentralized way. In fact, we observed that the combination of both components helps to mitigate backpressure limitations (e.g., scalability,centralization, and large end-to-end latencies). The drift-plus-penalty method uses a tunable optimization parameter that weight the relative importance of queue drift and routing cost. We find evidence that, in fact, this optimization parameter impacts the overall network performance. In light of this observation, we propose a self-organized controller based on locally available information and in the current packet being routed to tune such an optimization parameter under dynamic traffic demands. Thus, the goal of this heuristically built controller is to maintain the best trade-off between the Lyapunov drift and the penalty function to take into account the dynamic nature of semi-planned SC deployments. We propose low complexity heuristics to address problems that appear under different wireless mesh backhaul scenarios and conditions..
    corecore