28,117 research outputs found

    General Model for Infrastructure Multi-channel Wireless LANs

    Full text link
    In this paper we develop an integrated model for request mechanism and data transmission in multi-channel wireless local area networks. We calculated the performance parameters for single and multi-channel wireless networks when the channel is noisy. The proposed model is general it can be applied to different wireless networks such as IEEE802.11x, IEEE802.16, CDMA operated networks and Hiperlan\2.Comment: 11 Pages, IJCN

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception

    Full text link
    The effect of full-duplex cooperative relaying in a random access multiuser network is investigated here. First, we model the self-interference incurred due to full-duplex operation, assuming multi-packet reception capabilities for both the relay and the destination node. Traffic at the source nodes is considered saturated and the cooperative relay, which does not have packets of its own, stores a source packet that it receives successfully in its queue when the transmission to the destination has failed. We obtain analytical expressions for key performance metrics at the relay, such as arrival and service rates, stability conditions, and average queue length, as functions of the transmission probabilities, the self interference coefficient, and the links' outage probabilities. Furthermore, we study the impact of the relay node and the self-interference coefficient on the per-user and aggregate throughput, and the average delay per packet. We show that perfect self-interference cancelation plays a crucial role when the SINR threshold is small, since it may result to worse performance in throughput and delay comparing with the half-duplex case. This is because perfect self-interference cancelation can cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication
    corecore