3,646 research outputs found

    Modeling, Analysis and Impact of a Long Transitory Phase in Random Access Protocols

    Get PDF
    In random access protocols, the service rate depends on the number of stations with a packet buffered for transmission. We demonstrate via numerical analysis that this state-dependent rate along with the consideration of Poisson traffic and infinite (or large enough to be considered infinite) buffer size may cause a high-throughput and extremely long (in the order of hours) transitory phase when traffic arrivals are right above the stability limit. We also perform an experimental evaluation to provide further insight into the characterisation of this transitory phase of the network by analysing statistical properties of its duration. The identification of the presence as well as the characterisation of this behaviour is crucial to avoid misprediction, which has a significant potential impact on network performance and optimisation. Furthermore, we discuss practical implications of this finding and propose a distributed and low-complexity mechanism to keep the network operating in the high-throughput phase.Comment: 13 pages, 10 figures, Submitted to IEEE/ACM Transactions on Networkin

    On Efficiency and Validity of Previous Homeplug MAC Performance Analysis

    Get PDF
    The Medium Access Control protocol of Power Line Communication networks (defined in Homeplug and IEEE 1901 standards) has received relatively modest attention from the research community. As a consequence, there is only one analytic model that complies with the standardised MAC procedures and considers unsaturated conditions. We identify two important limitations of the existing analytic model: high computational expense and predicted results just prior to the predicted saturation point do not correspond to long-term network performance. In this work, we present a simplification of the previously defined analytic model of Homeplug MAC able to substantially reduce its complexity and demonstrate that the previous performance results just before predicted saturation correspond to a transitory phase. We determine that the causes of previous misprediction are common analytical assumptions and the potential occurrence of a transitory phase, that we show to be of extremely long duration under certain circumstances. We also provide techniques, both analytical and experimental, to correctly predict long-term behaviour and analyse the effect of specific Homeplug/IEEE 1901 features on the magnitude of misprediction errors

    On the Behavior of the Distributed Coordination Function of IEEE 802.11 with Multirate Capability under General Transmission Conditions

    Full text link
    The aim of this paper is threefold. First, it presents a multi-dimensional Markovian state transition model characterizing the behavior of the IEEE 802.11 protocol at the Medium Access Control layer which accounts for packet transmission failures due to channel errors modeling both saturated and non-saturated traffic conditions. Second, it provides a throughput analysis of the IEEE 802.11 protocol at the data link layer in both saturated and non-saturated traffic conditions taking into account the impact of both the physical propagation channel and multirate transmission in Rayleigh fading environment. The general traffic model assumed is M/M/1/K. Finally, it shows that the behavior of the throughput in non-saturated traffic conditions is a linear combination of two system parameters; the payload size and the packet rates, λ(s)\lambda^{(s)}, of each contending station. The validity interval of the proposed model is also derived. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed models.Comment: Submitted to IEEE Transactions on Wireless Communications, October 21, 200
    • …
    corecore