27,562 research outputs found

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    Full text link
    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201

    Sign-Compute-Resolve for Tree Splitting Random Access

    Get PDF
    We present a framework for random access that is based on three elements: physical-layer network coding (PLNC), signature codes and tree splitting. In presence of a collision, physical-layer network coding enables the receiver to decode, i.e. compute, the sum of the packets that were transmitted by the individual users. For each user, the packet consists of the user's signature, as well as the data that the user wants to communicate. As long as no more than K users collide, their identities can be recovered from the sum of their signatures. This framework for creating and transmitting packets can be used as a fundamental building block in random access algorithms, since it helps to deal efficiently with the uncertainty of the set of contending terminals. In this paper we show how to apply the framework in conjunction with a tree-splitting algorithm, which is required to deal with the case that more than K users collide. We demonstrate that our approach achieves throughput that tends to 1 rapidly as K increases. We also present results on net data-rate of the system, showing the impact of the overheads of the constituent elements of the proposed protocol. We compare the performance of our scheme with an upper bound that is obtained under the assumption that the active users are a priori known. Also, we consider an upper bound on the net data-rate for any PLNC based strategy in which one linear equation per slot is decoded. We show that already at modest packet lengths, the net data-rate of our scheme becomes close to the second upper bound, i.e. the overhead of the contention resolution algorithm and the signature codes vanishes.Comment: This is an extended version of arXiv:1409.6902. Accepted for publication in the IEEE Transactions on Information Theor
    • …
    corecore