814 research outputs found

    Joint Resource Allocation for eICIC in Heterogeneous Networks

    Full text link
    Interference coordination between high-power macros and low-power picos deeply impacts the performance of heterogeneous networks (HetNets). It should deal with three challenges: user association with macros and picos, the amount of almost blank subframe (ABS) that macros should reserve for picos, and resource block (RB) allocation strategy in each eNB. We formulate the three issues jointly for sum weighted logarithmic utility maximization while maintaining proportional fairness of users. A class of distributed algorithms are developed to solve the joint optimization problem. Our framework can be deployed for enhanced inter-cell interference coordination (eICIC) in existing LTE-A protocols. Extensive evaluation are performed to verify the effectiveness of our algorithms.Comment: Accepted by Globecom 201

    On/Off Macrocells and Load Balancing in Heterogeneous Cellular Networks

    Full text link
    The rate distribution in heterogeneous networks (HetNets) greatly benefits from load balancing, by which mobile users are pushed onto lightly-loaded small cells despite the resulting loss in SINR. This offloading can be made more aggressive and robust if the macrocells leave a fraction of time/frequency resource blank, which reduces the interference to the offloaded users. We investigate the joint optimization of this technique - referred to in 3GPP as enhanced intercell interference coordination (eICIC) via almost blank subframes (ABSs) - with offloading in this paper. Although the joint cell association and blank resource (BR) problem is nominally combinatorial, by allowing users to associate with multiple base stations (BSs), the problem becomes convex, and upper bounds the performance versus a binary association. We show both theoretically and through simulation that the optimal solution of the relaxed problem still results in an association that is mostly binary. The optimal association differs significantly when the macrocell is on or off; in particular the offloading can be much more aggressive when the resource is left blank by macro BSs. Further, we observe that jointly optimizing the offloading with BR is important. The rate gain for cell edge users (the worst 3-10%) is very large - on the order of 5-10x - versus a naive association strategy without macrocell blanking

    Matching Theory for Future Wireless Networks: Fundamentals and Applications

    Full text link
    The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this paper, the first comprehensive tutorial on the use of matching theory, a Nobelprize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then, the key solution concepts and algorithmic implementations of this framework are exposed. Then, the developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed

    Unified and Distributed QoS-Driven Cell Association Algorithms in Heterogeneous Networks

    Full text link
    This paper addresses the cell association problem in the downlink of a multi-tier heterogeneous network (HetNet), where base stations (BSs) have finite number of resource blocks (RBs) available to distribute among their associated users. Two problems are defined and treated in this paper: sum utility of long term rate maximization with long term rate quality of service (QoS) constraints, and global outage probability minimization with outage QoS constraints. The first problem is well-suited for low mobility environments, while the second problem provides a framework to deal with environments with fast fading. The defined optimization problems in this paper are solved in two phases: cell association phase followed by the optional RB distribution phase. We show that the cell association phase of both problems have the same structure. Based on this similarity, we propose a unified distributed algorithm with low levels of message passing to for the cell association phase. This distributed algorithm is derived by relaxing the association constraints and using Lagrange dual decomposition method. In the RB distribution phase, the remaining RBs after the cell association phase are distributed among the users. Simulation results show the superiority of our distributed cell association scheme compared to schemes that are based on maximum signal to interference plus noise ratio (SINR)
    corecore