2,754 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Ad hoc networks capacity scaling problem

    Get PDF
    oai:ojs.setjournal.com:article/1A large number of researchers found their interest in addressing the issue of capacity scaling for wireless ad hoc networks. This paper aims to provide a comprehensive overview of the development of capacity scaling laws in wireless networks, highlighting the problem of scaling as one of the basic challenges in their research. The review began with the definition of the notion of bandwidth of random networks, which were taken as a reference model of consideration when determining more advanced strategies for improving throughput capacity. Based on these strategies, other factors that have an impact on capacity scaling laws have been identified and elaborated. Finally, the capacity of hybrid wireless networks, ie networks in which at least two types of nodes functionally exist (ad hoc nodes/infrastructure nodes / auxiliary nodes), was partially investigated

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Wireless Handheld Solution for the Gaming Industry

    Get PDF
    of the essential elements of success in the gaming industry is the requirement of providing exceptional customer service. Technology plays a significant role in bringing state of the art solutions that enhance the overall customer experience. Currently a guest must go through multiple steps and a variety of departments to simply resolve issues with their player accounts (loyalty programs), update customer profiles, book hotel and restaurant reservations, sign up for promotions, etc. In order to effectively take care of these customers in both a timely and efficient manner, a wireless handheld device is needed that employees can carry with them to resolve and address these concerns. This project is aimed at identifying the proper wireless infrastructure for the gaming environment and also the wireless handheld device, such as an Ultra Mobile PC (UMPC) to effectively and efficiently take care of customers
    • …
    corecore