12,171 research outputs found

    Understanding Internet topology: principles, models, and validation

    Get PDF
    Building on a recent effort that combines a first-principles approach to modeling router-level connectivity with a more pragmatic use of statistics and graph theory, we show in this paper that for the Internet, an improved understanding of its physical infrastructure is possible by viewing the physical connectivity as an annotated graph that delivers raw connectivity and bandwidth to the upper layers in the TCP/IP protocol stack, subject to practical constraints (e.g., router technology) and economic considerations (e.g., link costs). More importantly, by relying on data from Abilene, a Tier-1 ISP, and the Rocketfuel project, we provide empirical evidence in support of the proposed approach and its consistency with networking reality. To illustrate its utility, we: 1) show that our approach provides insight into the origin of high variability in measured or inferred router-level maps; 2) demonstrate that it easily accommodates the incorporation of additional objectives of network design (e.g., robustness to router failure); and 3) discuss how it complements ongoing community efforts to reverse-engineer the Internet

    An Approximate Inner Bound to the QoS Aware Throughput Region of a Tree Network under IEEE 802.15.4 CSMA/CA and Application to Wireless Sensor Network Design

    Full text link
    We consider a tree network spanning a set of source nodes that generate measurement packets, a set of additional relay nodes that only forward packets from the sources, and a data sink. We assume that the paths from the sources to the sink have bounded hop count. We assume that the nodes use the IEEE 802.15.4 CSMA/CA for medium access control, and that there are no hidden terminals. In this setting, starting with a set of simple fixed point equations, we derive sufficient conditions for the tree network to approximately satisfy certain given QoS targets such as end-to-end delivery probability and delay under a given rate of generation of measurement packets at the sources (arrival rates vector). The structures of our sufficient conditions provide insight on the dependence of the network performance on the arrival rate vector, and the topological properties of the network. Furthermore, for the special case of equal arrival rates, default backoff parameters, and for a range of values of target QoS, we show that among all path-length-bounded trees (spanning a given set of sources and BS) that meet the sufficient conditions, a shortest path tree achieves the maximum throughput
    • …
    corecore