2,422 research outputs found

    On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance

    Full text link
    We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert-Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The problem is to design a sensing policy for channel selection to maximize the average reward, which can be formulated as a multi-arm restless bandit process. In this paper, we study the structure, optimality, and performance of the myopic sensing policy. We show that the myopic sensing policy has a simple robust structure that reduces channel selection to a round-robin procedure and obviates the need for knowing the channel transition probabilities. The optimality of this simple policy is established for the two-channel case and conjectured for the general case based on numerical results. The performance of the myopic sensing policy is analyzed, which, based on the optimality of myopic sensing, characterizes the maximum throughput of a multi-channel opportunistic communication system and its scaling behavior with respect to the number of channels. These results apply to cognitive radio networks, opportunistic transmission in fading environments, and resource-constrained jamming and anti-jamming.Comment: To appear in IEEE Transactions on Wireless Communications. This is a revised versio

    Cognitive Medium Access: Exploration, Exploitation and Competition

    Full text link
    This paper establishes the equivalence between cognitive medium access and the competitive multi-armed bandit problem. First, the scenario in which a single cognitive user wishes to opportunistically exploit the availability of empty frequency bands in the spectrum with multiple bands is considered. In this scenario, the availability probability of each channel is unknown to the cognitive user a priori. Hence efficient medium access strategies must strike a balance between exploring the availability of other free channels and exploiting the opportunities identified thus far. By adopting a Bayesian approach for this classical bandit problem, the optimal medium access strategy is derived and its underlying recursive structure is illustrated via examples. To avoid the prohibitive computational complexity of the optimal strategy, a low complexity asymptotically optimal strategy is developed. The proposed strategy does not require any prior statistical knowledge about the traffic pattern on the different channels. Next, the multi-cognitive user scenario is considered and low complexity medium access protocols, which strike the optimal balance between exploration and exploitation in such competitive environments, are developed. Finally, this formalism is extended to the case in which each cognitive user is capable of sensing and using multiple channels simultaneously.Comment: Submitted to IEEE/ACM Trans. on Networking, 14 pages, 2 figure

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms

    Full text link
    Multi-stage sensing is a novel concept that refers to a general class of spectrum sensing algorithms that divide the sensing process into a number of sequential stages. The number of sensing stages and the sensing technique per stage can be used to optimize performance with respect to secondary user throughput and the collision probability between primary and secondary users. So far, the impact of multi-stage sensing on network throughput and collision probability for a realistic network model is relatively unexplored. Therefore, we present the first analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing algorithms for Opportunistic Spectrum Access networks. The contribution of our work lies in studying the effect of the following parameters on performance: number of sensing stages, physical layer sensing techniques and durations per each stage, single and parallel channel sensing and access, number of available channels, primary and secondary user traffic, buffering of incoming secondary user traffic, as well as MAC layer sensing algorithms. Analyzed performance metrics include the average secondary user throughput and the average collision probability between primary and secondary users. Our results show that when the probability of primary user mis-detection is constrained, the performance of multi-stage sensing is, in most cases, superior to the single stage sensing counterpart. Besides, prolonged channel observation at the first stage of sensing decreases the collision probability considerably, while keeping the throughput at an acceptable level. Finally, in realistic primary user traffic scenarios, using two stages of sensing provides a good balance between secondary users throughput and collision probability while meeting successful detection constraints subjected by Opportunistic Spectrum Access communication

    Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks

    Full text link
    In Cognitive Radio Networks (CRNs), unlicensed users are allowed to access the licensed spectrum when it is not currently being used by primary users (PUs). In this paper, we study the throughput maximization problem for a multi-channel CRN where each SU can only sense a limited number of channels. We show that this problem is strongly NP-hard, and propose an approximation algorithm with a factor at least 1/2μ1/2\mu where μ∈[1,2]\mu \in [1,2] is a system parameter reflecting the sensing capability of SUs across channels and their sensing budgets. This performance guarantee is achieved by exploiting a nice structural property of the objective function and constructing a particular matching. Our numerical results demonstrate the advantage of our algorithm compared with both a random and a greedy sensing assignment algorithm
    • …
    corecore