1,048 research outputs found

    Throughput Maximization for the Gaussian Relay Channel with Energy Harvesting Constraints

    Full text link
    This paper considers the use of energy harvesters, instead of conventional time-invariant energy sources, in wireless cooperative communication. For the purpose of exposition, we study the classic three-node Gaussian relay channel with decode-and-forward (DF) relaying, in which the source and relay nodes transmit with power drawn from energy-harvesting (EH) sources. Assuming a deterministic EH model under which the energy arrival time and the harvested amount are known prior to transmission, the throughput maximization problem over a finite horizon of NN transmission blocks is investigated. In particular, two types of data traffic with different delay constraints are considered: delay-constrained (DC) traffic (for which only one-block decoding delay is allowed at the destination) and no-delay-constrained (NDC) traffic (for which arbitrary decoding delay up to NN blocks is allowed). For the DC case, we show that the joint source and relay power allocation over time is necessary to achieve the maximum throughput, and propose an efficient algorithm to compute the optimal power profiles. For the NDC case, although the throughput maximization problem is non-convex, we prove the optimality of a separation principle for the source and relay power allocation problems, based upon which a two-stage power allocation algorithm is developed to obtain the optimal source and relay power profiles separately. Furthermore, we compare the DC and NDC cases, and obtain the sufficient and necessary conditions under which the NDC case performs strictly better than the DC case. It is shown that NDC transmission is able to exploit a new form of diversity arising from the independent source and relay energy availability over time in cooperative communication, termed "energy diversity", even with time-invariant channels.Comment: appear in IEEE Journal on Selected Areas in Communications, special issue on theories and methods for advanced wireless relay

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Robust Transmissions in Wireless Powered Multi-Relay Networks with Chance Interference Constraints

    Full text link
    In this paper, we consider a wireless powered multi-relay network in which a multi-antenna hybrid access point underlaying a cellular system transmits information to distant receivers. Multiple relays capable of energy harvesting are deployed in the network to assist the information transmission. The hybrid access point can wirelessly supply energy to the relays, achieving multi-user gains from signal and energy cooperation. We propose a joint optimization for signal beamforming of the hybrid access point as well as wireless energy harvesting and collaborative beamforming strategies of the relays. The objective is to maximize network throughput subject to probabilistic interference constraints at the cellular user equipment. We formulate the throughput maximization with both the time-switching and power-splitting schemes, which impose very different couplings between the operating parameters for wireless power and information transfer. Although the optimization problems are inherently non-convex, they share similar structural properties that can be leveraged for efficient algorithm design. In particular, by exploiting monotonicity in the throughput, we maximize it iteratively via customized polyblock approximation with reduced complexity. The numerical results show that the proposed algorithms can achieve close to optimal performance in terms of the energy efficiency and throughput.Comment: 14 pages, 8 figure

    Optimal Scheduling and Power Allocation for Two-Hop Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as a promising technique for green communications. To realize its potential, communication protocols need to be redesigned to combat the randomness of the harvested energy. In this paper, we investigate how to apply relaying to improve the short-term performance of EH communication systems. With an EH source and a non-EH half-duplex relay, we consider two different design objectives: 1) short-term throughput maximization; and 2) transmission completion time minimization. Both problems are joint scheduling and power allocation problems, rendered quite challenging by the half-duplex constraint at the relay. A key finding is that directional water-filling (DWF), which is the optimal power allocation algorithm for the single-hop EH system, can serve as guideline for the design of two-hop communication systems, as it not only determines the value of the optimal performance, but also forms the basis to derive optimal solutions for both design problems. Based on a relaxed energy profile along with the DWF algorithm, we derive key properties of the optimal solutions for both problems and thereafter propose efficient algorithms. Simulation results will show that both scheduling and power allocation optimizations are necessary in two-hop EH communication systems.Comment: Submitted to IEEE Transaction on Wireless Communicatio

    Optimal Cooperative Power Allocation for Energy Harvesting Enabled Relay Networks

    Full text link
    In this paper, we present a new power allocation scheme for a decode-and-forward (DF) relaying-enhanced cooperative wireless system. While both source and relay nodes may have limited traditional brown power supply or fixed green energy storage, the hybrid source node can also draw power from the surrounding radio frequency (RF) signals. In particular, we assume a deterministic RF energy harvesting (EH) model under which the signals transmitted by the relay serve as the renewable energy source for the source node. The amount of harvested energy is known for a given transmission power of the forwarding signal and channel condition between the source and relay nodes. To maximize the overall throughput while meeting the constraints imposed by the non-sustainable energy sources and the renewable energy source, an optimization problem is formulated and solved. Based on different harvesting efficiency and channel condition, closed form solutions are derived to obtain the optimal source and relay power allocation jointly. It is shown that instead of demanding high on-grid power supply or high green energy availability, the system can achieve compatible or higher throughput by utilizing the harvested energy
    corecore