230 research outputs found

    Just a Second -- Scheduling Thousands of Time-Triggered Streams in Large-Scale Networks

    Full text link
    Deterministic real-time communication with bounded delay is an essential requirement for many safety-critical cyber-physical systems, and has received much attention from major standardization bodies such as IEEE and IETF. In particular, Ethernet technology has been extended by time-triggered scheduling mechanisms in standards like TTEthernet and Time-Sensitive Networking. Although the scheduling mechanisms have become part of standards, the traffic planning algorithms to create time-triggered schedules are still an open and challenging research question due to the problem's high complexity. In particular, so-called plug-and-produce scenarios require the ability to extend schedules on the fly within seconds. The need for scalable scheduling and routing algorithms is further supported by large-scale distributed real-time systems like smart energy grids with tight communication requirements. In this paper, we tackle this challenge by proposing two novel algorithms called Hierarchical Heuristic Scheduling (H2S) and Cost-Efficient Lazy Forwarding Scheduling (CELF) to calculate time-triggered schedules for TTEthernet. H2S and CELF are highly efficient and scalable, calculating schedules for more than 45,000 streams on random networks with 1,000 bridges as well as a realistic energy grid network within sub-seconds to seconds

    Towards Real-time Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are poised to change the way computer systems interact with the physical world. We plan on entrusting sensor systems to collect medical data from patients, monitor the safety of our infrastructure, and control manufacturing processes in our factories. To date, the focus of the sensor network community has been on developing best-effort services. This approach is insufficient for many applications since it does not enable developers to determine if a system\u27s requirements in terms of communication latency, bandwidth utilization, reliability, or energy consumption are met. The focus of this thesis is to develop real-time network support for such critical applications. The first part of the thesis focuses on developing a power management solution for the radio subsystem which addresses both the problem of idle-listening and power control. In contrast to traditional power management solutions which focus solely on reducing energy consumption, the distinguishing feature of our approach is that it achieves both energy efficiency and real-time communication. A solution to the idle-listening problem is proposed in Energy Efficient Sleep Scheduling based on Application Semantics: ESSAT). The novelty of ESSAT lies in that it takes advantage of the common features of data collection applications to determine when to turn on and off a node\u27s radio without affecting real-time performance. A solution to the power control problem is proposed in Real-time Power Aware-Routing: RPAR). RPAR tunes the transmission power for each packet based on its deadline such that energy is saved without missing packet deadlines. The main theoretical contribution of this thesis is the development of novel transmission scheduling techniques optimized for data collection applications. This work bridges the gap between wireless sensor networks and real-time scheduling theory, which have traditionally been applied to processor scheduling. The proposed approach has significant advantages over existing design methodologies:: 1) it provides predictable performance allowing for the performance of a system to be estimated upon its deployment,: 2) it is possible to detect and handle overload conditions through simple rate control mechanisms, and: 3) it easily accommodates workload changes. I developed this framework under a realistic interference model by coordinating the activities at the MAC, link, and routing layers. The last component of this thesis focuses on the development of a real-time patient monitoring system for general hospital units. The system is designed to facilitate the detection of clinical deterioration, which is a key factor in saving lives and reducing healthcare costs. Since patients in general hospital wards are often ambulatory, a key challenge is to achieve high reliability even in the presence of mobility. To support patient mobility, I developed the Dynamic Relay Association Protocol -- a simple and effective mechanism for dynamically discovering the right relays for forwarding patient data -- and a Radio Mapping Tool -- a practical tool for ensuring network coverage in 802.15.4 networks. We show that it is feasible to use low-power and low-cost wireless sensor networks for clinical monitoring through an in-depth clinical study. The study was performed in a step-down cardiac care unit at Barnes-Jewish Hospital. This is the first long-term study of such a patient monitoring system

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks
    • …
    corecore