408 research outputs found

    Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

    Get PDF
    In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Wireless Powered Communication Networks

    Get PDF
    The limited life time of batteries is a crucial issue in energy-constrained wireless communications. Recently, the radio frequency (RF) wireless energy transfer (WET) technique has been developed as a new practical method to extend the life time of wireless communication networks. Inspired by this, wireless-powered communication network (WPCN) has attracted much attention. Therefore, in this thesis, we consider practical WET and wireless-powered information transmission in WPCNs. First we investigate a WPCN with two nodes, in which an access point (AP) exchanges information with a wireless-powered user. The user is assumed to have no embedded energy supply and needs to harvest energy from RF signals broadcast by the AP. Differing from existing work that focuses on the design of wireless-powered communication with one-way information flow, we deal with a more general scenario where both the AP and the user have information to transmit. Considering that the AP and user can work in either half-duplex or full-duplex mode as well as having two practical receiver architectures at the user side, we propose five elementary communication protocols for the considered system. Moreover, we define the concept of a throughput region to characterize the tradeoff between the uplink and downlink throughput in all proposed protocols. Numerical simulations are finally performed to compare the throughput regions of the proposed five elementary protocols. To further the study on WPCN, we investigate a wireless-powered two-way relay system, in which two wireless-powered sources exchange information through a multi-antenna relay. Both sources are assumed to have no embedded energy supply and thus first need to harvest energy from the radio frequency signals broadcast by the relay before exchanging their information via the relay. We aim to maximize the sum throughput of both sources by jointly optimizing the time switching duration, the energy beamforming vector and the precoding matrix at the relay. The formulated problem is non-convex and hard to solve in its original form. Motivated by this, we simplify the problem by reducing the number of variables and by decomposing the precoding matrix into a transmit vector and a receive vector. We then propose a bisection search, a 1-D search and an iterative algorithm to optimize each variable. Numerical results show that our proposed scheme can achieve higher throughput than the conventional scheme without optimization on the beamforming vector and precoding matrix at the relay. Due to the high attenuation of RF energy over a long distance, RF based wireless-powered communication is usually designed for low-power scenarios, e.g., wireless-powered sensor networks. Recently, magnetic induction (MI) based WET has been proposed to wirelessly transfer a large amount of energy. Inspired by this, we investigate MI based WET in WPCN. Specifically, we study a MI based wireless-powered relaying network, in which a MI source transmits information to a MI destination, with the help of a MI based wireless powered relay. We propose four active relaying schemes, which consider different relaying modes and different energy harvesting receiver architectures at the relay. We then aim to maximize the end-to-end throughput of each scheme by using a bisection search, a water-filling algorithm, a Lagrange multiplier, quasi-convex programming and an iterative algorithm. We compare the proposed active relaying schemes with passive relaying. Numerical results show that the proposed relaying schemes with a decode-and-forward relaying mode significantly improve the throughput over passive relaying
    • …
    corecore