950 research outputs found

    Throughput Analysis for Multi-Point Joint Transmission with Quantized CSI Feedback

    Get PDF
    This paper addresses the problem of limited CSI feedback in coordinated multi-point (CoMP) networks. Specifically, the system throughput is obtained for block-fading CoMP channels with quantized CSI feedback, and the effect of feedback bit allocation on the system throughput is investigated for different user locations and fading distributions. The analytical and simulation results show that substantial throughput increment is achieved via CoMP joint transmission with very limited number of feedback bits per base station. The effect of optimal bit allocation becomes more important for the user that is located in the CoMP cluster edge areas. Also, the standard Zonal-sampling scheme provides the best bit allocation strategy in many cases, maximizing the system throughput

    Performance of Orthogonal Beamforming for SDMA with Limited Feedback

    Full text link
    On the multi-antenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to CSI inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser-interference-limited regime, the throughput of PU2RC is shown to scale logarithmically with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and also linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.Comment: 27 pages; to appear in IEEE Transactions on Vehicular Technolog
    • …
    corecore