911 research outputs found

    Resource allocation in OFDMA networks with half-duplex and imperfect full-duplex users

    Get PDF
    Recent studies indicate the feasibility of in-band fullduplex (FD) wireless communications, where a wireless radio transmits and receives simultaneously in the same band. Due to its potential to increase the capacity, analyzing the performance of a cellular network that contains full-duplex devices is crucial. In this paper, we consider maximizing the weighted sum-rate of downlink and uplink of a single cell OFDMA network which consists of an imperfect FD base-station (BS) and a mixture of half-duplex and imperfect full-duplex mobile users. To this end, the joint problem of sub-channel assignment and power allocation is investigated and a two-step solution is proposed. A heuristic algorithm to allocate each sub-channel to a pair of downlink and uplink users with polynomial complexity is presented. The power allocation problem is convexified based on the difference of two concave functions approach, for which an iterative solution is obtained. Simulation results demonstrate that when all the users and the BS are perfect FD nodes the network throughput could be doubled, Otherwise, the performance improvement is limited by the inter-node interference and the self-interference. We also investigate the effect of the self-interference cancellation capability and the percentage of FD users on the network performance in both indoor and outdoor scenarios.Comment: 6 pages, 8 figures, Accepted in IEEE International Conference on Communication (ICC), Malaysia, 201

    On the Benefits of Network-Level Cooperation in Millimeter-Wave Communications

    Full text link
    Relaying techniques for millimeter-wave wireless networks represent a powerful solution for improving the transmission performance. In this work, we quantify the benefits in terms of delay and throughput for a random-access multi-user millimeter-wave wireless network, assisted by a full-duplex network cooperative relay. The relay is equipped with a queue for which we analyze the performance characteristics (e.g., arrival rate, service rate, average size, and stability condition). Moreover, we study two possible transmission schemes: fully directional and broadcast. In the former, the source nodes transmit a packet either to the relay or to the destination by using narrow beams, whereas, in the latter, the nodes transmit to both the destination and the relay in the same timeslot by using a wider beam, but with lower beamforming gain. In our analysis, we also take into account the beam alignment phase that occurs every time a transmitter node changes the destination node. We show how the beam alignment duration, as well as position and number of transmitting nodes, significantly affect the network performance. Moreover, we illustrate the optimal transmission scheme (i.e., broadcast or fully directional) for several system parameters and show that a fully directional transmission is not always beneficial, but, in some scenarios, broadcasting and relaying can improve the performance in terms of throughput and delay.Comment: arXiv admin note: text overlap with arXiv:1804.0945

    Transmission Capacity of Full-Duplex MIMO Ad-Hoc Network with Limited Self-Interference Cancellation

    Get PDF
    In this paper, we propose a joint transceiver beamforming design to simultaneously mitigate self-interference (SI) and partial inter-node interference for full-duplex multiple-input and multiple-output ad-hoc network, and then derive the transmission capacity upper bound (TC-UB) for the corresponding network. Condition on a specified transceiver antenna's configuration, we allow the SI effect to be cancelled at transmitter side, and offer an additional degree-of-freedom at receiver side for more inter-node interference cancellation. In addition, due to the proposed beamforming design and imperfect SI channel estimation, the conventional method to obtain the TC-UB is not applicable. This motivates us to exploit the dominating interferer region plus Newton-Raphson method to iteratively formulate the TC-UB. The results show that the derived TC-UB is quite close to the actual one especially when the number of receive-antenna is small. Moreover, our proposed beamforming design outperforms the existing beamforming strategies, and FD mode works better than HD mode in low signal-to-noise ratio region.Comment: 7 pages, 4 figures, accepted by Globecom 201
    • …
    corecore