899 research outputs found

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    Fast and robust anchor calibration in range-based wireless localization

    Get PDF
    In this paper we investigate the anchor calibration problem where we want to find the anchor positions when the anchors are not able to range between each other. This is a problem of practical interest because in many systems, the anchors are not connected in a network but are just simple responders to range requests. The proposed calibration method is designed to be fast and simple using only a single range-capable device. For the estimation of the inter-anchor distances, we propose a Total Least Squares estimator as well as a L1 norm estimator. Real life experiments using publicly available hardware validate the proposed calibration technique and show the robustness of the algorithm to non-line-of-sight measurements
    • …
    corecore