3,983 research outputs found

    De-embedding method for electrical response extraction of through-silicon via (TSV) in silicon interposer technology and signal integrity performance comparison with embedded multi-die interconnect bridge (EMIB) technology

    Get PDF
    Traditional two-dimensional system-in-package (2D SiP) can no longer support the scaling of size, power, bandwidth, and cost at the same rate required by Moore\u27s Law. Three-dimensional integrated circuits (3D-ICs), 2.5D silicon interposer technology in which through silicon vias are widely used, are implemented to meet these challenges. Embedded multi-die interconnect bridge (EMIB) technology are proposed as well. In Section 1, a novel de-embedding method is proposed for TSV characterization by using a set of simple yet efficient test patterns. Full wave models and corresponding equivalent circuits are provided to explain the electrical performance of the test patterns clearly. Furthermore, broadband measurement is performed for all test patterns up to 40 GHz, to verify the accuracy of the developed full wave models. Scanning Electron Microscopy (SEM) measurements are taken for all the test patterns to optimize the full wave models. Finally, the proposed de-embedding method is applied to extract the response of the TSV pair. Good agreement between the de-embedded results with analytical characterization and the full-wave simulation for a single TSV pair indicates that the proposed de-embedding method works effectively up to 40 GHz. In Section 2, the signal integrity performance of EMIB technology is evaluated and compared with silicon interposer technology. Two examples are available for each technology, one is simple with only one single trace pair considered; the other is complex with three differential pairs considered in the full wave simulation. Results of insertion loss, return loss, crosstalk and eye diagram are provided as criteria to evaluate the signal integrity performance for both technologies. This work provides guidelines to both top-level decision and specific IC or channel design --Abstract, page iii

    Implementation of packaged integrated antenna with embedded front end for Bluetooth applications

    No full text
    The design, integration and realization of system in enhanced package approach towards fully functional system level integration by using a compact Bluetooth USB dongle as the demonstrator is presented here. The integration was done on FR4 substrates, which is totally compatible with today’s printed circuit board manufacturing capability. A commercially available Bluetooth integrated chip was chosen as the chipset of our demonstrator, and a package integrated antenna together with an embedded front end completes the system in package integration. The front end developed here is based on an embedded meander line combline filter and an embedded transformer balun. The filter has a 35% area reduction when compared with the classical combline filter and similar performance. The balun has the coils distributed on three layers that minimized the board area needed it and optimizes the performances. The proposed packaged integrated antenna approach is successfully demonstrated here and the new module shows excellent performance when compared with a commercial solution, surpassing the normal Bluetooth class II dongle range which is up to 10 m and increasing the module range up to 120 m without an extra power amplifier

    Thermal Noise in Modern CMOS Technology

    Get PDF
    Non

    Compact modelling in RF CMOS technology

    Get PDF
    With the continuous downscaling of complementary metal-oxide-semiconductor (CMOS) technology, the RF performance of metal-oxide-semiconductor field transistors (MOSFETs) has considerably improved over the past years. Today, the standard CMOS technology has become a popular choice for realizing radio frequency (RF) applications. The focus of the thesis is on device compact modelling methodologies in RF CMOS. Compact models oriented to integrated circuit (ICs) computer automatic design (CAD) are the key component of a process design kit (PDK) and the bridge between design houses and foundries. In this work, a novel substrate model is proposed for accurately characterizing the behaviour of RF-MOSFETs with deep n-wells (DNW). A simple test structure is presented to directly access the substrate parasitics from two-port measurements in DNWs. The most important passive device in RFIC design in CMOS is the spiral inductor. A 1-pi model with a novel substrate network is proposed to characterize the broadband loss mechanisms of spiral inductors. Based on the proposed 1-pi model, a physics-originated fully-scalable 2-pi model and model parameter extraction methodology are also presented for spiral inductors in this work. To test and verify the developed active and passive device models and model parameter extraction methods, a series of RF-MOSFETs and planar on-chip spiral inductors with different geometries manufactured by employing standard RF CMOS processes were considered. Excellent agreement between the measured and the simulated results validate the compact models and modelling technologies developed in this work

    Microwave Inter-Connections and Switching by means of Carbon Nano-tubes

    Get PDF
    In this work, carbon nanotube (CNT) based interconnections and switches will be reviewed, discussing the possibility to use nanotubes as potential building blocks for signal routing in microwave networks. In particular, theoretical design of coplanar waveguide (CPW), micro‐strip single‐pole‐single‐throw (SPST) and single‐pole‐double‐throw (SPDT) devices has been performed to predict the electrical performances of CNT‐based RF switching configurations. Actually, by using the semiconductor‐conductor transition obtained by properly biasing the CNTs, an isolation better than 30 dB can be obtained between the ON and OFF states of the switch for very wide bandwidth applications. This happens owing to the shape deformation and consequent change in the band‐gap due to the external pressure caused by the electric field. State‐of‐art for other switching techniques based on CNTs and their use for RF nano‐interconnections is also discussed, together with current issues in measurement techniques

    Microwave Inter-Connections and Switching by means of Carbon Nano-tubes

    Get PDF
    In this work, carbon nanotube (CNT) based interconnections and switches will be reviewed, discussing the possibility to use nanotubes as potential building blocks for signal routing in microwave networks. In particular, theoretical design of coplanar waveguide (CPW), micro‐strip single‐pole‐single‐throw (SPST) and single‐pole‐double‐throw (SPDT) devices has been performed to predict the electrical performances of CNT‐based RF switching configurations. Actually, by using the semiconductor‐conductor transition obtained by properly biasing the CNTs, an isolation better than 30 dB can be obtained between the ON and OFF states of the switch for very wide bandwidth applications. This happens owing to the shape deformation and consequent change in the band‐gap due to the external pressure caused by the electric field. State‐of‐art for other switching techniques based on CNTs and their use for RF nano‐interconnections is also discussed, together with current issues in measurement techniques

    Three-dimensional micromachined on-chip inductors for high frequency applications

    Get PDF
    Demands for wireless communication are ever-escalating for consumer and military communication applications. The requirements of portability, more functionality and lower cost have been driving forces toward smaller, more sophisticated and flexible wireless devices with lower power consumption. To meet these requirements, monolithically integrated passive inductors with high Q-factors and high self-resonant frequencies are desirable. Q-factor and self-resonant frequency of an inductor are significantly degraded at high frequencies due to conductor ohmic loss, magnetically induced eddy current in the conductive substrate, and lower self-resonant frequency from capacitance between conductive substrate and conductors. In this dissertation, novel three-dimensional arch-like solenoid and dome-shaped spiral inductors are designed, fabricated, and characterized. MEMS-based fabrication techniques such as copper electroplating through voids in thick SU-8 photoresist molds and EAGLE2100 conformal photoresist molds on sacrificial arch-like or dome-shape SJR5740 photoresist mounds are utilized. An air gap between the inductor and the silicon substrate is used to reduce the degradations of inductor performance. According to the Sonnet electromagnetic simulations, 30 μm air-gap suspension over the substrate is an adequate choice for these inductors. Suspended arch-like solenoid copper inductor has flat bottom conductor connected to arch-like top conductor with an air core in between. This design has only 2 contact points per inductor turn to minimize series resistance. Suspended domeshaped spiral copper inductor is fabricated on a sacrificial photoresist dome with the outer end connected to one probe pad, and the inner end connected to the other probe pad through vias and an air-bridge. The sidewalls of spiral turns in this design overlap less with each other thereby reducing inter-turn capacitances. Fabricated inductors are characterized and modeled at high frequencies from Sparameter measurements. ABCD-parameters, derived from the S-parameters are translated into a simplified physical π-model. The resulting arch-like suspended inductors with 2-5 turns have inductances between 0.62 to 0.79 nH, peak Q-factor values between 15.42 to 17 at peak-Q frequencies between 4.7 GHz to 7.0 GHz, and self-resonant frequencies between 47.6 GHz to 88.6 GHz. The 3-turn dome-shaped spiral inductor has inductance of 3.37 nH, peak Q-factor of 35.9 at 1.65 GHz, and self-resonant frequency at 18.74 GHz

    2X-Thru, 1X-Reflection, and Thru-Line de-embedding: Theory, sensitivity analysis, and error corrections

    Get PDF
    Due to the simplicity of design and measurement, as well as the accuracy of results, the 2X-Thru de-embedding (2XTD), 1X-Reflection de-embedding (1XRD), and Thru-Line de-embedding (TLD) have been replaced the traditional de-embedding algorithms, such as TRL and SOLT. In this dissertation, theory of 2n-port 2XTD, 1XRD, and TLD are completely derived first. The self-error reduction schemes is introduced to mitigate the de-embedding errors due to non-ideal manufacturing effects of non-zero mode conversion terms, as well as the asymmetric, and manufacturing variations. The validations are performed on both theory and self-error reduction through simulation and measurements cases. The 2X-Thru de-embedding (2XTD) is discussed in details. The prevailing 2X-Thru de-embedding (2XTD) requires much less calibration standards, yet still maintain the high accuracy of de-embedded results. Nevertheless every de-embedding method is based on the rigorous mathematical derivations, the manufacturing variations are inevitable. IEEE P370 committee provided the manufactured test coupons with golden standard to test the accuracy of different de-embedding methods when considering the manufacturing variations. Such manufacturing variations are propagated to the de-embedded results through the sensitivity of the test fixtures. The error reductions scheme in this section mitigates the de-embedded errors by correcting some of the manufacturing variations in the algorithm. This section will focus on the three kinds of manufacturing variations: 1) test fixture asymmetry; 2) the perturbations of the test fixtures in the calibration structure of 2X-Thru and de-embedding structure of Total; 3) the mode conversion terms due to the manufacturing variations --Abstract, page iv

    Radio Frequency Micro/Nano-Fluidic Devices for Microwave Dielectric Property Characterizations

    Get PDF
    In this dissertation, a number of different topics in microwave dielectric property measurements have been covered by a systematic approach to the goals of development of dielectric spectroscopy and study of its high electric field effects with integrated on-chip microwave microfluidic / nanofluidic devices. A method of parasitic effects cancellation for dielectric property measurement is proposed, analyzed, and experimentally evaluated for microwave characterization of small devices and materials that yield low intensity signals. The method dramatically reduces parasitic effects to uncover the otherwise buried signals. A high-sensitive radio frequency (RF) device is then developed and fabricated to detect small dielectric property changes in microfluidic channel. Sensitivity improvement via on-chip transmission line loss compensation is then analyzed and experimentally demonstrated. Different samples are measured and high sensitivity is achieved compared to conventional transmission-line-based methods. High DC electric field effects on dielectric properties of water are investigated with microwave microfluidic devices. Gold microstrip-line-based devices and highly-doped silicon microstrip-line-based devices are exploited. Initiation process of water breakdown in a small gap is discussed. Electrode surface roughness is examined and its effect on observed water breakdown is investigated. It is believed that electrode surface roughness is one of critical factors for the initiation process of water breakdown in small gap system. Finally, water dielectric property subjected to uniform DC electric field in 260 nm planar microfluidic channels is experimentally studied via silicon microstrip-line-based devices. When applied DC field is as high as up to ~ 1 MV/cm, the water is sustained and no breakdown is occurred. Strong water dielectric saturation effects are observed from measured water dielectric spectroscopy. An on-chip, broadband microwave dielectric spectrometer with integrated transmission line and nanofluidic channels is designed, fabricated and characterized through microwave S-parameter measurements. Heavily-doped Si material is used to build the microstrip line to provide broadband characterization capability. 10 nm deep planar Si nanofluidic channels are fabricated through native oxide etch and wafer bonding process. It is the first effort to build the microstrip line with periodically loaded individual sub-10 nm nanofluidic channels to conduct the broadband high frequency characterization of materials within confined space. The functionality of the device is demonstrated by the measurement of DI water. It behaves well and has great potentials on the study of confinement effects of fluids and molecules. Further work includes development of parasitic signal de-embedding procedures for accurate measurements

    Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications

    Get PDF
    Im Rahmen der vorliegenden Dissertation zum Thema „Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications“ wurde auf Basis einer 130 nm SiGe BiCMOS Technologie ein Through-Silicon Via (TSV) Technologiemodul zur Herstellung elektrischer Durchkontaktierungen für die Anwendung im Millimeterwellen und Sub-THz Frequenzbereich entwickelt. TSVs wurden mittels elektromagnetischer Simulationen modelliert und in Bezug auf ihre elektrischen Eigenschaften bis in den sub-THz Bereich bis zu 300 GHz optimiert. Es wurden die Wechselwirkungen zwischen Modellierung, Fertigungstechnologie und den elektrischen Eigenschaften untersucht. Besonderes Augenmerk wurde auf die technologischen Einflussfaktoren gelegt. Daraus schlussfolgernd wurde das TSV Technologiemodul entwickelt und in eine SiGe BiCMOS Technologie integriert. Hierzu wurde eine Via-Middle Integration gewählt, welche eine Freilegung der TSVs von der Wafer Rückseite erfordert. Durch die geringe Waferdicke von ca. 75 μm wird einen Carrier Wafer Handling Prozess verwendet. Dieser Prozess wurde unter der Randbedingung entwickelt, dass eine nachfolgende Bearbeitung der Wafer innerhalb der BiCMOS Pilotlinie erfolgen kann. Die Rückseitenbearbeitung zielt darauf ab, einen Redistribution Layer auf der Rückseite der BiCMOS Wafer zu realisieren. Hierzu wurde ein Prozess entwickelt, um gleichzeitig verschiedene TSV Strukturen mit variablen Geometrien zu realisieren und damit eine hohe TSV Design Flexibilität zu gewährleisten. Die TSV Strukturen wurden von DC bis über 300 GHz charakterisiert und die elektrischen Eigenschaften extrahiert. Dabei wurde gezeigt, dass TSV Verbindungen mit sehr geringer Dämpfung <1 dB bis 300 GHz realisierbar sind und somit ausgezeichnete Hochfrequenzeigenschaften aufweisen. Zuletzt wurden vielfältige Anwendungen wie das Grounding von Hochfrequenzschaltkreisen, Interposer mit Waveguides und 300 GHz Antennen dargestellt. Das Potential für Millimeterwellen Packaging und 3D Integration wurde evaluiert. TSV Technologien sind heutzutage in vielen Anwendungen z.B. im Bereich der Systemintegration von Digitalschaltkreisen und der Spannungsversorgung von integrierten Schaltkreisen etabliert. Im Rahmen dieser Arbeit wurde der Einsatz von TSVs für Millimeterwellen und dem sub-THz Frequenzbereich untersucht und die Anwendung für den sub-THz Bereich bis 300 GHz demonstriert. Dadurch werden neue Möglichkeiten der Systemintegration und des Packaging von Höchstfrequenzsystemen geschaffen.:Bibliographische Beschreibung List of symbols and abbreviations Acknowledgement 1. Introduction 2. FEM Modeling of BiCMOS & Interposer Through-Silicon Vias 3. Fabrication of BiCMOS & Silicon Interposer with TSVs 4. Characterization of BiCMOS Embedded Through-Silicon Vias 5. Applications 6. Conclusion and Future Work 7. Appendix 8. Publications & Patents 9. Bibliography 10. List of Figures and Table
    corecore