595 research outputs found

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Development of modern methods for the diagnostics of murals in architectural monuments

    Get PDF
    The paper studies monitoring of the state of murals, retrieval of data pertaining to this state and management and storing of the said data. The possibility of integration of traditional methods of mural mapping and modern methods of data visualization, including new Google Project Tango device technology for fixation of complex textures of inner 3D volumes of architectural monuments has been investigated (for instance Assumption Cathedral). We further discuss the express-scanning of automated cartogramming for further comparison of states and methods of assessing the damage done to the mural. Results indicate that additional work is needed to improve the precision of the method.peer-reviewe

    Indiscapes: Instance Segmentation Networks for Layout Parsing of Historical Indic Manuscripts

    Full text link
    Historical palm-leaf manuscript and early paper documents from Indian subcontinent form an important part of the world's literary and cultural heritage. Despite their importance, large-scale annotated Indic manuscript image datasets do not exist. To address this deficiency, we introduce Indiscapes, the first ever dataset with multi-regional layout annotations for historical Indic manuscripts. To address the challenge of large diversity in scripts and presence of dense, irregular layout elements (e.g. text lines, pictures, multiple documents per image), we adapt a Fully Convolutional Deep Neural Network architecture for fully automatic, instance-level spatial layout parsing of manuscript images. We demonstrate the effectiveness of proposed architecture on images from the Indiscapes dataset. For annotation flexibility and keeping the non-technical nature of domain experts in mind, we also contribute a custom, web-based GUI annotation tool and a dashboard-style analytics portal. Overall, our contributions set the stage for enabling downstream applications such as OCR and word-spotting in historical Indic manuscripts at scale.Comment: Oral presentation at International Conference on Document Analysis and Recognition (ICDAR) - 2019. For dataset, pre-trained networks and additional details, visit project page at http://ihdia.iiit.ac.in

    Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents

    Get PDF
    Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets

    A Novel Framework for Interactive Visualization and Analysis of Hyperspectral Image Data

    Get PDF

    Visual image processing in various representation spaces for documentary preservation

    Get PDF
    This thesis establishes an advanced image processing framework for the enhancement and restoration of historical document images (HDI) in both intensity (gray-scale or color) and multispectral (MS) representation spaces. It provides three major contributions: 1) the binarization of gray-scale HDI; 2) the visual quality restoration of MS HDI; and 3) automatic reference data (RD) estimation for HDI binarization. HDI binarization is one of the enhancement techniques that produces bi-level information which is easy to handle using methods of analysis (OCR, for instance) and is less computationally costly to process than 256 levels of grey or color images. Restoring the visual quality of HDI in an MS representation space enhances their legibility, which is not possible with conventional intensity-based restoration methods, and HDI legibility is the main concern of historians and librarians wishing to transfer knowledge and revive ancient cultural heritage. The use of MS imaging systems is a new and attractive research trend in the field of numerical processing of cultural heritage documents. In this thesis, these systems are also used for automatically estimating more accurate RD to be used for the evaluation of HDI binarization algorithms in order to track the level of human performance. Our first contribution, which is a new adaptive method of intensity-based binarization, is defined at the outset. Since degradation is present over document images, binarization methods must be adapted to handle degradation phenomena locally. Unfortunately, these methods are not effective, as they are not able to capture weak text strokes, which results in a deterioration of the performance of character recognition engines. The proposed approach first detects a subset of the most probable text pixels, which are used to locally estimate the parameters of the two classes of pixels (text and background), and then performs a simple maximum likelihood (ML) to locally classify the remaining pixels based on their class membership. To the best of our knowledge, this is the first time local parameter estimation and classification in an ML framework has been introduced for HDI binarization with promising results. A limitation of this method in the case with as the intensity-based methods of enhancement is that they are not effective in dealing with severely degraded HDI. Developing more advanced methods based on MS information would be a promising alternative avenue of research. In the second contribution, a novel approach to the visual restoration of HDI is defined. The approach is aimed at providing end users (historians, librarians, etc..) with better HDI visualization, specifically; it aims to restore them from degradations, while keeping the original appearance of the HDI intact. Practically, this problem cannot be solved by conventional intensity-based restoration methods. To cope with these limitations, MS imaging is used to produce additional spectral images in the invisible light (infrared and ultraviolet) range, which gives greater contrast to objects in the documents. The inpainting-based variational framework proposed here for HDI restoration involves isolating the degradation phenomena in the infrared spectral images, and then inpainting them in the visible spectral images. The final color image to visualize is therefore reconstructed from the restored visible spectral images. To the best of our knowledge, this is the first time the inpainting technique has been introduced for MS HDI. The experimental results are promising, and our objective, in collaboration with the BAnQ (Bibliothèque et Archives nationales de Québec), is to push heritage documents into the public domain and build an intelligent engine for accessing them. It is useful to note that the proposed model can be extended to other MS-based image processing tasks. Our third contribution is presented, which is to consider a new problem of RD (reference data) estimation, in order to show the importance of working with MS images rather than gray-scale or color images. RDs are mandatory for comparing different binarization algorithms, and they are usually generated by an expert. However, an expert’s RD is always subject to mislabeling and judgment errors, especially in the case of degraded data in restricted representation spaces (gray-scale or color images). In the proposed method, multiple RD generated by several experts are used in combination with MS HDI to estimate new, more accurate RD. The idea is to include the agreement of experts about labels and the multivariate data fidelity in a single Bayesian classification framework to estimate the a posteriori probability of new labels forming the final estimated RD. Our experiments show that estimated RD are more accurate than an expert’s RD. To the best of our knowledge, no similar work to combine binary data and multivariate data for the estimation of RD has been conducted

    Subjective and objective quality assessment of ancient degraded documents

    Get PDF
    Archiving, restoration and analysis of damaged manuscripts have been largely increased in recent decades. Usually, these documents are physically degraded because of aging and improper handing. They also cannot be processed manually because a massive volume of these documents exist in libraries and archives around the world. Therefore, automatic methodologies are needed to preserve and to process their content. These documents are usually processed through their images. Degraded document image processing is a difficult task mainly because of the existing physical degradations. While it can be very difficult to accurately locate and remove such distortions, analyzing the severity and type(s) of these distortions is feasible. This analysis provides useful information on the type and severity of degradations with a number of applications. The main contributions of this thesis are to propose models for objectively assessing the physical condition of document images and to classify their degradations. In this thesis, three datasets of degraded document images along with the subjective ratings for each image are developed. In addition, three no-reference document image quality assessment (NR-DIQA) metrics are proposed for historical and medieval document images. It should be mentioned that degraded medieval document images are a subset of the historical document images and may contain both graphical and textual content. Finally, we propose a degradation classification model in order to identify common distortion types in old document images. Essentially, existing no reference image quality assessment (NR-IQA) metrics are not designed to assess physical document distortions. In the first contribution, we propose the first dataset of degraded document images along with the human opinion scores for each document image. This dataset is introduced to evaluate the quality of historical document images. We also propose an objective NR-DIQA metric based on the statistics of the mean subtracted contrast normalized (MSCN) coefficients computed from segmented layers of each document image. The segmentation into four layers of foreground and background is done based on an analysis of the log-Gabor filters. This segmentation is based on the assumption that the sensitivity of the human visual system (HVS) is different at the locations of text and non-text. Experimental results show that the proposed metric has comparable or better performance than the state-of-the-art metrics, while it has a moderate complexity. Degradation identification and quality assessment can complement each other to provide information on both type and severity of degradations in document images. Therefore, we introduced, in the second contribution, a multi-distortion historical document image database that can be used for the research on quality assessment of degraded documents as well as degradation classification. The developed dataset contains historical document images which are classified into four categories based on their distortion types, namely, paper translucency, stain, readers’ annotations, and worn holes. An efficient NR-DIQA metric is then proposed based on three sets of spatial and frequency image features extracted from two layers of text and non-text. In addition, these features are used to estimate the probability of the four aforementioned physical distortions for the first time in the literature. Both proposed quality assessment and degradation classification models deliver a very promising performance. Finally, we develop in the third contribution a dataset and a quality assessment metric for degraded medieval document (DMD) images. This type of degraded images contains both textual and pictorial information. The introduced DMD dataset is the first dataset in its category that also provides human ratings. Also, we propose a new no-reference metric in order to evaluate the quality of DMD images in the developed dataset. The proposed metric is based on the extraction of several statistical features from three layers of text, non-text, and graphics. The segmentation is based on color saliency with assumption that pictorial parts are colorful. It also follows HVS that gives different weights to each layer. The experimental results validate the effectiveness of the proposed NR-DIQA strategy for DMD images

    Framework for Automatic Identification of Paper Watermarks with Chain Codes

    Get PDF
    Title from PDF of title page viewed May 21, 2018Dissertation advisor: Reza DerakhshaniVitaIncludes bibliographical references (pages 220-235)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2017In this dissertation, I present a new framework for automated description, archiving, and identification of paper watermarks found in historical documents and manuscripts. The early manufacturers of paper have introduced the embedding of identifying marks and patterns as a sign of a distinct origin and perhaps as a signature of quality. Thousands of watermarks have been studied, classified, and archived. Most of the classification categories are based on image similarity and are searchable based on a set of defined contextual descriptors. The novel method presented here is for automatic classification, identification (matching) and retrieval of watermark images based on chain code descriptors (CC). The approach for generation of unique CC includes a novel image preprocessing method to provide a solution for rotation and scale invariant representation of watermarks. The unique codes are truly reversible, providing high ratio lossless compression, fast searching, and image matching. The development of a novel distance measure for CC comparison is also presented. Examples for the complete process are given using the recently acquired watermarks digitized with hyper-spectral imaging of Summa Theologica, the work of Antonino Pierozzi (1389 – 1459). The performance of the algorithm on large datasets is demonstrated using watermarks datasets from well-known library catalogue collections.Introduction -- Paper and paper watermarks -- Automatic identification of paper watermarks -- Rotation, Scale and translation invariant chain code -- Comparison of RST_Invariant chain code -- Automatic identification of watermarks with chain codes -- Watermark composite feature vector -- Summary -- Appendix A. Watermarks from the Bernstein Collection used in this study -- Appendix B. The original and transformed images of watermarks -- Appendix C. The transformed and scaled images of watermarks -- Appendix D. Example of chain cod
    • …
    corecore