784 research outputs found

    Deep Spiking Neural Network for Video-based Disguise Face Recognition Based on Dynamic Facial Movements

    Get PDF
    With the increasing popularity of social media andsmart devices, the face as one of the key biometrics becomesvital for person identification. Amongst those face recognitionalgorithms, video-based face recognition methods could make useof both temporal and spatial information just as humans do toachieve better classification performance. However, they cannotidentify individuals when certain key facial areas like eyes or noseare disguised by heavy makeup or rubber/digital masks. To thisend, we propose a novel deep spiking neural network architecturein this study. It takes dynamic facial movements, the facial musclechanges induced by speaking or other activities, as the sole input.An event-driven continuous spike-timing dependent plasticitylearning rule with adaptive thresholding is applied to train thesynaptic weights. The experiments on our proposed video-baseddisguise face database (MakeFace DB) demonstrate that theproposed learning method performs very well - it achieves from95% to 100% correct classification rates under various realisticexperimental scenario

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Lagrangian Motion Magnification with Double Sparse Optical Flow Decomposition

    Get PDF
    Motion magnification techniques aim at amplifying and hence revealing subtle motion in videos. There are basically two main approaches to reach this goal, namely via Eulerian or Lagrangian techniques. While the first one magnifies motion implicitly by operating directly on image pixels, the Lagrangian approach uses optical flow techniques to extract and amplify pixel trajectories. Microexpressions are fast and spatially small facial expressions that are difficult to detect. In this paper, we propose a novel approach for local Lagrangian motion magnification of facial micromovements. Our contribution is three-fold: first, we fine-tune the recurrent all-pairs field transforms for optical flows (RAFT) deep learning approach for faces by adding ground truth obtained from the variational dense inverse search (DIS) for optical flow algorithm applied to the CASME II video set of faces. This enables us to produce optical flows of facial videos in an efficient and sufficiently accurate way. Second, since facial micromovements are both local in space and time, we propose to approximate the optical flow field by sparse components both in space and time leading to a double sparse decomposition. Third, we use this decomposition to magnify micro-motions in specific areas of the face, where we introduce a new forward warping strategy using a triangular splitting of the image grid and barycentric interpolation of the RGB vectors at the corners of the transformed triangles. We demonstrate the very good performance of our approach by various examples

    A biological and real-time framework for hand gestures and head poses

    Get PDF
    Human-robot interaction is an interdisciplinary research area that aims at the development of social robots. Since social robots are expected to interact with humans and understand their behavior through gestures and body movements, cognitive psychology and robot technology must be integrated. In this paper we present a biological and real-time framework for detecting and tracking hands and heads. This framework is based on keypoints extracted by means of cortical V1 end-stopped cells. Detected keypoints and the cells’ responses are used to classify the junction type. Through the combination of annotated keypoints in a hierarchical, multi-scale tree structure, moving and deformable hands can be segregated and tracked over time. By using hand templates with lines and edges at only a few scales, a hand’s gestures can be recognized. Head tracking and pose detection are also implemented, which can be integrated with detection of facial expressions in the future. Through the combinations of head poses and hand gestures a large number of commands can be given to a robot
    • …
    corecore