8 research outputs found

    HIGH FIDELITY MEASUREMENT OF BIOELECTRICAL SIGNALS

    Get PDF
    Previous research regarding the acquisition and electrical characterization of bio- electrical signals of both noninvasive “oriundis in vivo”, generally associated with elec- tromyography (EMG), electrocardiography (EKG), or electroencephalography (EEG), and active “oriundis ex vivo et vitro” material characterization, generally associated with bioimpedance spectroscopy (BIS); while successfully providing beneficial results, was ul- timately plagued with a variety of intrinsic electrical distortions [1] [2]. Conversely, the frequent manifestation of such distortions resulted in an investigation into the nature of their occurrence, which subsequently resulted in my research into the nature of such dis- tortions, the conditions in which they occur, useful techniques to model and minimize their impact, and the underlying methodology needed to obtain the highest fidelity possi- ble when acquiring such measurements. Furthermore, the techniques developed are then applied to both noninvasively obtained “oriundis in vivo” and active “oriundis ex vivo et vitro” applied bioelectrical signals, and the compensated measurements are compared with the uncompensated measurements obtained within the previously mentioned research

    Ultrasensitive detection of toxocara canis excretory-secretory antigens by a nanobody electrochemical magnetosensor assay.

    Full text link
    peer reviewedHuman Toxocariasis (HT) is a zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis in the human host. Despite of being the most cosmopolitan helminthiasis worldwide, its diagnosis is elusive. Currently, the detection of specific immunoglobulins IgG against the Toxocara Excretory-Secretory Antigens (TES), combined with clinical and epidemiological criteria is the only strategy to diagnose HT. Cross-reactivity with other parasites and the inability to distinguish between past and active infections are the main limitations of this approach. Here, we present a sensitive and specific novel strategy to detect and quantify TES, aiming to identify active cases of HT. High specificity is achieved by making use of nanobodies (Nbs), recombinant single variable domain antibodies obtained from camelids, that due to their small molecular size (15kDa) can recognize hidden epitopes not accessible to conventional antibodies. High sensitivity is attained by the design of an electrochemical magnetosensor with an amperometric readout with all components of the assay mixed in one single step. Through this strategy, 10-fold higher sensitivity than a conventional sandwich ELISA was achieved. The assay reached a limit of detection of 2 and15 pg/ml in PBST20 0.05% or serum, spiked with TES, respectively. These limits of detection are sufficient to detect clinically relevant toxocaral infections. Furthermore, our nanobodies showed no cross-reactivity with antigens from Ascaris lumbricoides or Ascaris suum. This is to our knowledge, the most sensitive method to detect and quantify TES so far, and has great potential to significantly improve diagnosis of HT. Moreover, the characteristics of our electrochemical assay are promising for the development of point of care diagnostic systems using nanobodies as a versatile and innovative alternative to antibodies. The next step will be the validation of the assay in clinical and epidemiological contexts
    corecore