21,140 research outputs found

    Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media

    Full text link
    Here we numerically study a model of excitable media, namely, a network with occasionally quiet nodes and connection weights that vary with activity on a short-time scale. Even in the absence of stimuli, this exhibits unstable dynamics, nonequilibrium phases -including one in which the global activity wanders irregularly among attractors- and 1/f noise while the system falls into the most irregular behavior. A net result is resilience which results in an efficient search in the model attractors space that can explain the origin of certain phenomenology in neural, genetic and ill-condensed matter systems. By extensive computer simulation we also address a relation previously conjectured between observed power-law distributions and the occurrence of a "critical state" during functionality of (e.g.) cortical networks, and describe the precise nature of such criticality in the model.Comment: 18 pages, 9 figure

    Video Based Flame Detection Using Spatio-Temporal Features and SVM Classification

    Get PDF
    Video-based surveillance systems can be used for early fire detection and localization in order to minimize the damage and casualties caused by wildfires. However, reliability of these systems is an important issue and therefore early detection versus false alarm rate has to be considered. In this paper, we present a new algorithm for video based flame detection, which identifies spatio-temporal features of fire such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. For each candidate region of an image a feature vector is generated and used as input to an SVM classifier, which discriminates between fire and fire-coloured regions. Experimental results show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio

    Evolutionary prisoner's dilemma game on hierarchical lattices

    Full text link
    An evolutionary prisoner's dilemma (PD) game is studied with players located on a hierarchical structure of layered square lattices. The players can follow two strategies [D (defector) and C (cooperator)] and their income comes from PD games with the ``neighbors.'' The adoption of one of the neighboring strategies is allowed with a probability dependent on the payoff difference. Monte Carlo simulations are performed to study how the measure of cooperation is affected by the number of hierarchical levels (Q) and by the temptation to defect. According to the simulations the highest frequency of cooperation can be observed at the top level if the number of hierarchical levels is low (Q<4). For larger Q, however, the highest frequency of cooperators occurs in the middle layers. The four-level hierarchical structure provides the highest average (total) income for the whole community.Comment: appendix adde

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions
    corecore