27,220 research outputs found

    A Recursive Threshold Visual Cryptography Scheme

    Get PDF
    This paper presents a recursive hiding scheme for 2 out of 3 secret sharing. In recursive hiding of secrets, the user encodes additional information about smaller secrets in the shares of a larger secret without an expansion in the size of the latter, thereby increasing the efficiency of secret sharing. We present applications of our proposed protocol to images as well as text.Comment: 8 page

    Lattice-based threshold cryptography

    Get PDF
    Ever since the appearance of quantum computers, prime factoring and discrete logarithm based cryptography has been put in question, giving birth to the so called post-quantum cryptography. The goal of this bachelor's degree thesis is to develop a post-quantum threshold cryptosystem, in particular based on Ring Learning with Errors, a lattice-based problem

    Threshold cryptography based on Asmuth–Bloom secret sharing

    Get PDF
    Cataloged from PDF version of article.In this paper, we investigate how threshold cryptography can be conducted with the Asmuth-Bloom secret sharing scheme and present three novel function sharing schemes for RSA, ElGamal and Paillier cryptosysterns. To the best of our knowledge, these are the first provably secure threshold cryptosystems realized using the Asmuth-Bloom secret sharing. Proposed schemes are comparable in performance to earlier proposals in threshold cryptography. (c) 2007 Elsevier Inc. All rights reserved

    Optimal Colored Threshold Visual Cryptography Schemes

    Get PDF
    Visual cryptography schemes allow the encoding of a secret image into n shares which are distributed to the participants. The shares are such that only qualified subsets of participants can visually recover the secret image. Usually the secret image consist of black and white pixels. In colored threshold visual cryptography schemes the secret image is composed of pixels taken from a given set of c colors. The pixels expansion and the contrast of a scheme are two measures of the goodness of the scheme. In this paper, we study c-color (k,n)-threshold visual cryptography schemes and provide a characterization of contrast-optimal schemes. More specifically we prove that there exists a contrast-optimal scheme that is a member of a special set of schemes, which we call canonical schemes, and that satisfy strong symmetry properties. Then we use canonical schemes to provide a constructive proof of optimality, with respect to the pixel expansion, of c-color (n,n)-threshold visual cryptography schemes. Finally, we provide constructions of c-color (2,n)-threshold schemes whose pixels expansion improves on previously proposed schemes

    Digital certificates and threshold cryptography

    Get PDF
    This dissertation discusses the use of secret sharing cryptographic protocols for distributing and sharing of secret documents, in our case PDF documents. We discuss the advantages and uses of such a system in the context of collaborative environments. Description of the cryptographic protocol involved and the necessary Public Key Infrastructure (PKI) shall be presented. We also provide an implementation of this framework as a “proof of concept” and fundament the use of a certificate extension as the basis for threshold cryptography. Details of the shared secret distribution protocol and shared secret recovery protocol shall be given as well as the associated technical implementation details. The actual secret sharing algorithm implemented at this stage is based on an existing well known secret sharing scheme that uses polynomial interpolation over a finite field. Finally we conclude with a practical assessment of our prototype

    Superlinear threshold detectors in quantum cryptography

    Full text link
    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systems using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear towards the end of the gate, allowing eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.Comment: Rewritten for clearity. Included a discussion on detector dark counts, a discussion on how to tackle this type of loopholes, and updated references. 8 pages, 6 figure

    Raw-data attacks in quantum cryptography with partial tomography

    Get PDF
    We consider a variant of the BB84 protocol for quantum cryptography, the prototype of tomographically incomplete protocols, where the key is generated by one-way communication rather than the usual two-way communication. Our analysis, backed by numerical evidence, establishes thresholds for eavesdropping attacks on the raw data and on the generated key at quantum bit error rates of 10% and 6.15%, respectively. Both thresholds are lower than the threshold for unconditional security in the standard BB84 protocol.Comment: 11 pages, 2 figure

    Finding the Optimal Value for Threshold Cryptography on Cloud Computing

    Get PDF
    The objective of using threshold cryptography on cloud environment is to protect the keys, which are the most important elements in cryptographic systems. Threshold cryptography works by dividing the private key to a number of shares, according to the number of virtual machines, then distributing them each share to each virtual machine. In order to generate the key back, not all the shares are needed. Howerver, the problem is that there has been no research attemping to find a suitable threshold value for key reconstruction. Therefore, this paper presented a guildline designed and implemented that can assist to choose such value. The experiment was setup using CloudSim to simulate cloud environment and collecting time taken in key distribution and key reconstruction process to achieve the optimal threshold value
    corecore