24,034 research outputs found

    Approximating Threshold Circuits by Rational Functions

    Get PDF
    AbstractMotivated by the problem of understanding the limitations of threshold networks for representing boolean functions, we consider size-depth trade-offs for threshold circuits that compute the parity function. Using a fundamental result in the theory of rational approximation, we show how to approximate small threshold circuits by rational functions of low degree. We apply this result to establish an almost optimal lower bound of Ω(n2/ln2n) on the number of edges of any depth-2 threshold circuit with polynomially bounded weights that computes the parity function. We also prove that any depth-3 threshold circuit with polynomially bounded weights requires Ω(n1.2/ln5/3n) edges to compute parity. On the other hand, we give a construction of a depth d threshold circuit that computes parity with n1+1/Θ(φd) edges where φ = (1 + √5)/2 is the golden ratio. We conjecture that there are no linear size bounded depth threshold circuits for computing parity

    Size, Depth and Energy of Threshold Circuits Computing Parity Function

    Get PDF
    We investigate relations among the size, depth and energy of threshold circuits computing the n-variable parity function PAR_n, where the energy is a complexity measure for sparsity on computation of threshold circuits, and is defined to be the maximum number of gates outputting "1" over all the input assignments. We show that PAR_n is hard for threshold circuits of small size, depth and energy: - If a depth-2 threshold circuit C of size s and energy e computes PAR_n, it holds that 2^{n/(elog ^e n)} ? s; and - if a threshold circuit C of size s, depth d and energy e computes PAR_n, it holds that 2^{n/(e2^{e+d}log ^e n)} ? s. We then provide several upper bounds: - PAR_n is computable by a depth-2 threshold circuit of size O(2^{n-2e}) and energy e; - PAR_n is computable by a depth-3 threshold circuit of size O(2^{n/(e-1)} + 2^{e-2}) and energy e; and - PAR_n is computable by a threshold circuit of size O((e+d)2^{n-m}), depth d + O(1) and energy e + O(1), where m = max (((e-1)/(d-1))^{d-1}, ((d-1)/(e-1))^{e-1}). Our lower and upper bounds imply that threshold circuits need exponential size if both depth and energy are constant, which contrasts with the fact that PAR_n is computable by a threshold circuit of size O(n) and depth 2 if there is no restriction on the energy. Our results also suggest that any threshold circuit computing the parity function needs depth to be sparse if its size is bounded

    Root finding with threshold circuits

    Get PDF
    We show that for any constant d, complex roots of degree d univariate rational (or Gaussian rational) polynomials---given by a list of coefficients in binary---can be computed to a given accuracy by a uniform TC^0 algorithm (a uniform family of constant-depth polynomial-size threshold circuits). The basic idea is to compute the inverse function of the polynomial by a power series. We also discuss an application to the theory VTC^0 of bounded arithmetic.Comment: 19 pages, 1 figur

    Average-Case Lower Bounds and Satisfiability Algorithms for Small Threshold Circuits

    Get PDF
    We show average-case lower bounds for explicit Boolean functions against bounded-depth threshold circuits with a superlinear number of wires. We show that for each integer d > 1, there is epsilon_d > 0 such that Parity has correlation at most 1/n^{Omega(1)} with depth-d threshold circuits which have at most n^{1+epsilon_d} wires, and the Generalized Andreev Function has correlation at most 1/2^{n^{Omega(1)}} with depth-d threshold circuits which have at most n^{1+epsilon_d} wires. Previously, only worst-case lower bounds in this setting were known [Impagliazzo/Paturi/Saks, SIAM J. Comp., 1997]. We use our ideas to make progress on several related questions. We give satisfiability algorithms beating brute force search for depth-dd threshold circuits with a superlinear number of wires. These are the first such algorithms for depth greater than 2. We also show that Parity cannot be computed by polynomial-size AC^0 circuits with n^{o(1)} general threshold gates. Previously no lower bound for Parity in this setting could handle more than log(n) gates. This result also implies subexponential-time learning algorithms for AC^0 with n^{o(1)} threshold gates under the uniform distribution. In addition, we give almost optimal bounds for the number of gates in a depth-d threshold circuit computing Parity on average, and show average-case lower bounds for threshold formulas ofany depth. Our techniques include adaptive random restrictions, anti-concentration and the structural theory of linear threshold functions, and bounded-read Chernoff bounds

    Neural computation of arithmetic functions

    Get PDF
    A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n -bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions

    Polynomial Threshold Functions, AC^0 Functions and Spectral Norms

    Get PDF
    The class of polynomial-threshold functions is studied using harmonic analysis, and the results are used to derive lower bounds related to AC^0 functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). The main result is that polynomial-threshold functions can be characterized by means of their spectral representation. In particular, it is proved that a Boolean function whose L_1 spectral norm is bounded by a polynomial in n is a polynomial-threshold function, and that a Boolean function whose L_∞^(-1) spectral norm is not bounded by a polynomial in n is not a polynomial-threshold function. Some results for AC^0 functions are derived
    • …
    corecore