2,401 research outputs found

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and the Double Unitary Coupled-Cluster Approach.

    Get PDF
    Applications of quantum simulation algorithms to obtain electronic energies of molecules on noisy intermediate-scale quantum (NISQ) devices require careful consideration of resources describing the complex electron correlation effects. In modeling second-quantized problems, the biggest challenge confronted is that the number of qubits scales linearly with the size of the molecular basis. This poses a significant limitation on the size of the basis sets and the number of correlated electrons included in quantum simulations of chemical processes. To address this issue and enable more realistic simulations on NISQ computers, we employ the double unitary coupled-cluster (DUCC) method to effectively downfold correlation effects into the reduced-size orbital space, commonly referred to as the active space. Using downfolding techniques, we demonstrate that properly constructed effective Hamiltonians can capture the effect of the whole orbital space in small-size active spaces. Combining the downfolding preprocessing technique with the variational quantum eigensolver, we solve for the ground-state energy of H2, Li2, and BeH2 in the cc-pVTZ basis using the DUCC-reduced active spaces. We compare these results to full configuration-interaction and high-level coupled-cluster reference calculations

    Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces

    Get PDF
    The \emph{Chow parameters} of a Boolean function f:{1,1}n{1,1}f: \{-1,1\}^n \to \{-1,1\} are its n+1n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of any linear threshold function ff uniquely specify ff within the space of all Boolean functions, but until recently (O'Donnell and Servedio) nothing was known about efficient algorithms for \emph{reconstructing} ff (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the \emph{Chow Parameters Problem.} Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function ff, runs in time \tilde{O}(n^2)\cdot (1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a representation of an LTF ff' that is \eps-close to ff. The only previous algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot 2^{2^{\tilde{O}(1/\eps^2)}}. As a byproduct of our approach, we show that for any linear threshold function ff over {1,1}n\{-1,1\}^n, there is a linear threshold function ff' which is \eps-close to ff and has all weights that are integers at most \sqrt{n} \cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower bound of max{n,\max\{\sqrt{n}, (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg, Servedio). Our techniques also yield improved algorithms for related problems in learning theory
    corecore